Practical Maya Programming
with Python

Unleash the power of Python in Maya and unlock your creativity

PACKT

Practical Maya Programming
with Python

Unleash the power of Python in Maya and unlock
your creativity

Robert Galanakis

PUBLISHING
BIRMINGHAM - MUMBAI

Practical Maya Programming with Python

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book

is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014
Production reference: 1180714

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84969-472-8
www . packtpub.com

Cover image by Andrei Cosmin Cristea (Andrei@undoz.com)

Credits

Author
Robert Galanakis

Reviewers
Harry Boltz

Brian Escribano

Michael Tsai

Commissioning Editor
Akram Hussain

Acquisition Editor
Subho Gupta

Content Development Editor
Dayan Hyames

Technical Editors
Krishnaveni Haridas

Manal Pednekar

Copy Editors
Aditya Nair

Stuti Srivastava

Project Coordinator
Leena Purkait

Proofreaders
Stephen Copestake

Maria Gould
Paul Hindle

Indexers
Mariammal Chettiyar

Tejal Soni

Priya Subramani

Graphics
Sheetal Aute

Yuvraj Mannari

Abhinash Sahu

Production Coordinator
Pooja Chiplunkar

Cover Work
Pooja Chiplunkar

About the Author

Robert Galanakis is a technical artist cum programmer who has worked in various
areas of game development. He is the Technical Director of EVE Online at CCP Games,
Iceland, where he focuses on Python, Lean, and Agile training and evangelism. In 2008,
Rob founded tech-artists.org, which is the largest and the most active community
focused on tech art on the Internet. He has spoken at Game Developers Conference
several times and has also written many articles about tools, pipelines, and culture.

His blog can be found at www . robg3d. com. He lives in Reykjavik, Iceland, with his
wife Casady and their son Marcus.

About the Reviewers

Brian Escribano has over 11 years of experience working in the fields of education,
TV, and games. He builds world-class character rigs and animation pipelines for
companies such as Nickelodeon, Mirada, and Spark Unlimited. With his deep
scripting knowledge in Python and MEL, Brian brings a wealth of expertise and
experience to any team he works with.

Michael Tsai attended the Academy of Art University at San Francisco to

study Visual Effects. After college, he worked on Fantastic Four 2 - Rise of the Silver
Surfer, Red Cliff 2 - The Battle of Red Cliff, and the stereoscopic version of G-Force.

In 2012, Michael received his Master of Entertainment Technology degree (MET)
from the Entertainment Technology Center of Carnegie Mellon University. Elysium
was another feature film he worked on before he joined Schell Games in Pittsburgh
as a full-time game artist.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www . Packt Pub . com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[a] PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content
* On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents

Preface 1
Chapter 1: Introspecting Maya, Python, and PyMEL 9
Creating your library 9
Using the interpreter 10
Finding a place for our library 10
Choosing a development root 11
Creating a function in your IDE 12
Reloading code changes 13
Exploring Maya and PyMEL 13
Creating an introspection function 15
Understanding Python and MEL types 16
Using the method resolution order 18
PyNodes all the way down 19
Understanding PyMEL data and math types 21
Leveraging the REPL 23
Building the pmhelp function 24
Creating a query string for a PyMEL object 25
Creating more tests 27
Adding support for modules 29
Adding support for types 30
Adding support for methods 30
Adding support for functions 33
Adding support for non-PyMEL objects 34
Designing with EAFP versus LBYL 37
Code is never complete 38
Opening help in a web browser 38

Summary 40

Table of Contents

Chapter 2: Writing Composable Code 41
Defining composability 41
Identifying anti-patterns of composability 42
Avoiding the use of Boolean flags 44
Evolving legacy code into composable code 45
Rewriting code for composability 46
Getting the first item in a sequence 46
Writing head and tail functions 48
Learning to use list comprehensions 48
Implementing is_exact_type 50
Saying goodbye to map and filter 51
Writing a skeleton converter library 51
Writing the docstring and pseudocode 52
Understanding docstrings and reStructured Text 53
Writing the first implementation 53
Breaking the first implementation 54
Understanding interface contracts 55
Extracting the safe_setparent utility function 56
Learning how to refactor 57
Simplifying the node to joint conversion 58
Learning how to use closures 60
Dealing with node connections 61
Dealing with namespaces 61
Wrapping up the skeleton converter 62
Writing a character creator 63
Stubbing out the character creator 64
Implementing convert_hierarchies_main 65
Implementing convert_hierarchies 66
Decomposing into composable functions 66
Implementing convert_hierarchy 68
Supporting inevitable modifications 69
Improving the performance of PyMEL 72
Defining performance 73
Refactoring for performance 73
Rewriting inner loops to use maya.cmds 75
Summary 75
Chapter 3: Dealing with Errors 77
Understanding exceptions 77
Introducing exception types 78
Explaining try/catch/finally flow control 79

Lii]

Table of Contents

Explaining traceback objects 81
Explaining the exc_info tuple 82
Living with unhandled exceptions 83
Handling exceptions at the application level 83
Golden rules of error handling 84
Focus on the critical path 85
Keep the end user in mind 85
Only catch errors you can handle 86
Avoid partial mutations 87
Practical error handling in Maya 88
Dealing with expensive and mutable state 88
Leveraging undo blocks 90
Dealing with Maya's poor exception design 91
Leveraging the Maya application 92
Dealing with the Maya application 92
Leveraging Python, which is better than MEL 92
Building a high-level error handler 92
Understanding sys.excepthook 93
Using sys.excepthook in Maya 94
Creating an error handler 95
Improving the error handler 96
Inspecting Python code objects 97
Adding filtering based on filename 98
Assembling the contents of an error e-mail 100
Sending the error e-mail 103
Installing the error handler 104
Obeying the What If Two Programs Did This rule 105
Improving the error handler 106
Adding a user interface 106
Using a background thread to send the e-mail 107
Moving beyond e-mail 107
Capturing locals 107
Attaching log files 108
Summary 109
Chapter 4: Leveraging Context Managers and

Decorators in Maya 111
Inverting the subroutine 111
Introducing decorators 113
Explaining decorators 113
Wrapping an exporter with a decorator 117

[iii]

Table of Contents

Introducing context managers 118
Writing the undo_chunk context manager 121
Writing the undo_on_error context manager 122
Contrasting decorators and context managers 123

Context managers for changing scene state 124
Building the set_file_prompt context manager 125
Building the at_time context manager 126
Building the with_unit context manager 126
Building the set_renderlayer_active context manager 127
Building the set_namespace_active context manager 127
Improving on future versions of Maya 129

Creating the denormalized_skin context manager 129
Safely swapping vertex influences 129
Addressing performance concerns 131

Creating a decorator to record metrics 133
Getting a unique key 134
Recording duration 134
Reporting duration 135
Handling errors 136

Advanced decorator topics 138
Defining decorators with arguments 138
Decorating PyMEL attributes and methods 139
Stacking decorators 139
Using Python's decorator library 140
Doing decorators the right way 140

Summary 141

Chapter 5: Building Graphical User Interfaces for Maya 143

Introducing Qt, PyQt, and PySide 143
Introducing Qt widgets 144
Introducing Qt layouts 145
Understanding Qt main windows and sorting 145
Introducing Qt signals 146

Establishing rules for crafting a GUI 146
Prefer pure PySide GUIs where possible 146
Use command-style Ul building where necessary 146
Avoid the use of .ui files 147

Installing PySide 147

Supporting PySide and PyQt 148

Creating the hierarchy converter GUI 149
Creating the window 149

[iv]

Table of Contents

Running a Python file as a script 150
Introducing the QApplication class 151
Understanding the event loop 151
Running your GUI 152
Designing and building your GUI 153
Defining control, container, and window widgets 153
Adding the rest of the widgets 155
Hooking up the application to be effected by the GUI 156
Hooking up the GUI to be effected by the application 158
Simulating application events 160
Considering alternative implementations 161
Integrating the tool GUI with Maya 162
Opening the tool GUI from Maya 162
Getting the main Maya window as a QMainWindow 163
Making a Qt window the child of Maya's window 164
Using Python's reload function with GUIs 165
Emitting a signal from Maya 166
Connecting Maya to a signal 167
Verifying the hierarchy converter works 169
Working with menus 169
Creating a top-level menu 169
Getting the Qt object from a Maya path 170
Changing the font of a widget 171
Marking menus as new 172
Creating a test case 173
Adding a persistence registry 174
Verifying the new menu marker works 176
Using alternative methods to style widgets 176
Working with Maya shelves 177
Summary 178
Chapter 6: Automating Maya from the Outside 179
Controlling Maya through request-reply 180
Using a Python client and Maya server 180
Controlling Python through exec and eval 180
Handling problems with IPC 181
Installing ZeroMQ 181
Demonstrating request-reply with ZeroMQ 182
Explaining connection strings, ports, bind, and connect 183
Designing the automation system 184

Pairing one client and one server 184

[v]

Table of Contents

Bootstrapping the server from the client 185
The client-server handshake 185
Defining the server loop 188
Serializing requests and responses 188
Choosing what the server does 189
Handling exceptions between client and server 189
Understanding the Maya startup routine 191
Using batch mode versus GUI mode 192
Choosing a startup configuration mechanism 192
Using command line options 192
Using environment variables 193
Building the request-reply automation system 193
Creating a Python package 194
Launching Maya from Python 194
Automatically killing the server 196
Creating a basic Maya server 197
Running code at Maya startup 198
Understanding eval and exec 199
Adding support for eval and exec 201
Adding support for exception handling 202
Adding support for timeouts 206
Adding support for the client-server handshake 208
Practical uses and improvements 211
Batch processing using Maya 211
Running a server in a Maya GUI session 213
Running automated tests in Maya 214
Adding support for logging 214
Supporting multiple languages and applications 215
Supporting control from a remote computer 215
Designing an object-oriented system 216
Evaluating other RPC frameworks 216
Summary 216
Chapter 7: Taming the Maya API 217
Explaining types 218
Dicts all the way down 218
Using custom types to simplify code 220
Introducing inheritance by drawing shapes 221
Introducing Maya's APl and architecture 225
Understanding the OpenMaya bindings 226

Navigating the Maya API Reference 227

[vil

Table of Contents

Understanding MObjects and function sets 229
Learning the Maya Python API by example 230
Converting a name to an MObject node 230
Getting the name of an MObject 231
Getting the hash of a node 231
Building a mesh 232
Setting mesh normals 238
Using MScriptUtil to call a method 241
Using OpenMaya for callbacks 243
Comparing Maya Python APl and PyMEL 246
Creating a Maya Python plugin 247
The life of a Python plugin 248
Creating the sound player library 249
Creating the plugin file 250
Reloading plugins 252
Adding a command flag 252
Comparing the OpenMaya and scripting solutions 255
Using PyMEL in a plugin that loads during startup 256
Summary 257
Chapter 8: Unleashing the Maya API through Python 259
Understanding Dependency Graph plugins 260
Building a simple node plugin 260
Understanding plugin type IDs 262
Defining inputs, outputs, and the initializer 263
Creating the compute method 266
Taming the non-Pythonic Maya API 268
Demystifying Python metaprogramming 268
Rethinking type creation 269
Exploring the type function 270
The importance of being declarative 271
Designing the node factory 273
Designing plugin nodes 273
Designing the attribute specification 274
Designing the node type specification 275
Building the node factory 276
Specifying attributes 276
Creating attributes 277
Specifying a node 279
Using partial application to create attributes 281

Creating a node 282

[vii]

Table of Contents

Slaying the compute method 285
Extending the node factory 289
Supporting string and color attributes 289
Supporting enum attributes 290
Supporting transform nodes 292
Overriding MPxNode methods 293
Summary 294
Chapter 9: Becoming a Part of the Python Community 295
Understanding Open Source Software 296
Differentiating OSS from script download sites 296
Defining what a third-party module is 297
Creating a site directory for third-party modules 298
Explaining the site directory 298
Creating a new site directory for Maya 299
Establishing the site directory at startup 299
Working with Python distributions in Maya 300
Using the Python Package Index 300
Adding a source distribution to Maya 300
Adding an egg or wheel to Maya 301
Using binary distributions on Windows 302
Using pip to install third-party modules 303
Contributing to the open source community 303
Designing Maya Python code for open source 304
Starting an open source project 306
Distributing your project 307
Engaging with the wider community 308
Summary 309
Appendix: Python Best Practices 311
The args and kwargs parameters 31
String formatting 313
String concatenation 315
Raw strings and string literals 316
Path building and manipulation 317
Unicode strings 318
Using the doctest module 319
Adopting Test-Driven Development 320
Using the GitHub repository for this book 321

Index

323

[viii]

Preface

When Autodesk added support for Python into Maya 8.5, few people understood the
implications. It was a decision that has fundamentally changed the way 3D art gets
done. Now, years later, we stand on the edge of realizing its promise.

The promise of Python in Maya goes beyond just a familiar language with a great
syntax. Any language could have been chosen to bind to Maya; and most would
have been more familiar, and with a better syntax than MEL, and easier to use than
C++. So, why Python?

The promise goes beyond a powerful language with lots of built-in features. Python is
said to have batteries included, but so do other languages, and Autodesk certainly has
lots of batteries in Maya that now also exist in Python. So, again, why Python?

The promise goes beyond having a single language for scripting, API use, and
plugins. It goes beyond the endless third-party libraries maintained by a large
community. It goes beyond having powerful development tools.

The promise of Python in Maya is all of these things and more. You can learn how to
use the language by leveraging a wide variety of resources that have nothing to do
with Maya. You can easily translate what you know of MEL and the C++ API and
use it in Python, but with an improved development velocity and maintainability

of code. You can use your favorite standard Python editor and tools. You can learn
about the language from a technical and design perspective and apply that to
improve your programming in Maya. You can be part of a large, vibrant, diverse
community of developers on the forefront of multiple areas of technology.

Preface

Join me as we explore topics that will allow you to unleash the power of Maya
through Python. Together, we'll learn how Python works both under the hood and
over it, how Maya integrates with Python, and how the elegant PyMEL builds on
that integration. We will drill down into what makes Python code beautiful and
idiomatic, and how we can use these concepts and Python's language features to
make our Maya Python code expressive and elegant. We will leverage third-party
solutions for networking and user interfaces, to compliment and extend what

is included with Maya and Python. We will decouple Python code from Maya
dependencies, making our work go smoother and faster

This book is not a reference. It is not a cookbook, and it is not a comprehensive guide
to Maya's Python APL. It is a book that will teach you how to write better Python
code for use inside of Maya. It will unearth interesting ways of using Maya and
Python to create amazing things that wouldn't be possible otherwise. While there is
plenty of code in this book that I encourage you to copy and adapt, this book is not
about providing recipes. It is a book to teach skills and enable.

This is a book which, I hope, helps realize the promise of Python in Maya.

What this book covers

Chapter 1, Introspecting Maya, Python, and PyMEL, explores how Maya and
Python work individually and together to create a powerful programming and
scripting environment. It covers some of the key technical underpinnings for the
rest of the book.

Chapter 2, Writing Composable Code, introduces the practice of writing code that can be
reused in many places. Composable code is a fundamental concept for the rest of the
skills taught in this book.

Chapter 3, Dealing with Errors, teaches you all about exceptions and errors in Maya
and Python. We explore several strategies for handling them effectively.

Chapter 4, Leveraging Context Managers and Decorators in Maya, covers context
managers and decorators, which are two powerful features of Python, and how they
can be used to simplify your code.

Chapter 5, Building Graphical User Interfaces for Maya, demonstrates the PySide and
PyQt frameworks, how to abstract your user interface code from underlying logic,
and a strategy of building GUIs to maximize maintainability and productivity.

Chapter 6, Automating Maya from the Outside, shows how Maya can be controlled
from another process, explains how request-reply systems work, and builds a fully
featured automation system on these principles.

[2]

Preface

Chapter 7, Taming the Maya API, introduces the Maya Python API and how types and
classes work in Python and Maya. It contains a number of examples to demonstrate
the API, as well as a Maya command plugin.

Chapter 8, Unleashing the Maya API through Python, covers the creation of a library
to easily create Maya plugin nodes, demonstrating how to map the Maya API onto
Pythonic idioms using metaprogramming.

Chapter 9, Becoming a Part of the Python Community, goes over the concepts behind
open source software, demonstrates how to find and use third-party modules,
explains how to create your own open source project, and tours the Python and
Maya programming communities.

Appendix, Python Best Practices, explains in detail various Python language features
and miscellaneous, but very relevant, topics.

What you need for this book

You will need a copy of Autodesk Maya 2013 for this book. Newer versions are fine,
and older versions that use Python 2.6 (2011, 2012) should be acceptable as well. Any
operating system capable of running Maya (Windows, OS X, Linux) should work,
though you will need to translate things such as file paths to what is appropriate on
your system.

I would also suggest having an install of Python 2.6 or 2.7 outside Maya for
exploring and running some of the samples that can be run from the interactive
interpreter prompt. You can download Python 2.6 or 2.7 from http: //www.python.
org/download, or it may be installed on your Mac or Linux OS already!

Finally, I strongly suggest installing both a powerful text editor and an Integrated
Development Environment (IDE). Python is a real programming language, and
you should use the powerful tools available. If you are an experienced Python user
already happy with vim, I don't expect to convert you. But if you are a converted
MEL scripter playing around in Notepad, it is time to embrace your good fortune!

For a text editor, Sublime Text (http://www.sublimetext.com) is popular,
cross-platform, and free to use on an unlimited trial. Notepad++
(http://notepad-plus-plus.org) is excellent if you are on Windows and prefer
free and open source. There are dozens of other good text editors, and if the two
editors mentioned here do not tickle your fancy, you should keep trying until you
find one that does.

[31]

http://www.python.org/download
http://www.python.org/download
http://www.sublimetext.com
http://notepad-plus-plus.org

Preface

Finally, the choice of IDE is usually a contentious topic. For Python, however,

I can confidently say PyCharm (http://www.jetbrains.com/pycharm/) by
JetBrains is the premiere IDE, and my personal favorite. It has a free and quite
powerful Community Edition as well. Other popular options are Wing IDE
(http://www.wingware.com) and Eclipse with PyDev (http://pydev.org).
Experiment with a few different programs, but whatever you do, move past IDLE,
the IDE bundled with Python!

Who this book is for

Do you currently use Python with Maya and ask yourself: "Can I do better?"
* Are you a MEL scripter who has started using Python and want to know
what all the fuss is about?
* Areyou a Python programmer who is starting with Maya and believes there
must be a better way?

* Have you been using Python in Maya for a while but work hard to
continuously improve?

Some basic experience with Python and Maya is expected. This book does not cover
those most primitive topics that are inevitably learned through introductory Maya
and Python use.

Even more than experience, this book requires a willingness to learn. Some of the
more advanced or unfamiliar topics may feel a bit like learning how to ride a bicycle,
but keep peddling and you'll get the hang of things in no time.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other modules through
the use of the import statement."

A block of code is set as follows:

def spam() :
return 'spam!'

[4]

http://www.jetbrains.com/pycharm/

Preface

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

def more_ spam() :

spams = ' '.join([spam()] * 5)
return spams

Any command line input or output is written as follows:

> mayapy --version

Python 2.6.4

Code meant to be entered by the Python interactive interpreter uses its familiar
conventions. Input lines are prefixed with ">>>". Continuations for multiline
statements are prefixed with ". . .". Output from the interpreter has no prefix:

>>> 'This is input'.replace('in', 'out')
'This is output'
>>> if True:
print 'Hello!'
Hello

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Clicking on the Next button moves you to the next screen".

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

[51]

www.packtpub.com/authors

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to have
the files e-mailed directly to you.

The code for this book is also available on GitHub, at https://github.com/
rgalanakis/practicalmayapython. See the Appendix, Python Best Practices, for
more information about the GitHub repository.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

[6]

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/rgalanakis/practicalmayapython
https://github.com/rgalanakis/practicalmayapython
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

You can also contact the author, Robert Galanakis, at rob.galanakis@gmail . com.

[71

Introspecting Maya,
Python, and PyMEL

Maya and Python are both excellent and elegant tools that can together achieve
amazing results. And while it may be tempting to dive in and start wielding this
power, it is prudent to understand some basic things first. Knowledge of the
fundamentals will provide the platform from which we will grow great skills
and conquer our obstacles throughout the rest of this book.

In this chapter, we will look at Python as a language, Maya as a program, and
PyMEL as a framework. We will begin by briefly going over how to use the
standard Python interpreter, the Maya Python interpreter, the Script Editor in Maya,
and your Integrated Development Environment (IDE) or text editor in which you
will do the majority of your development. Our goal for the chapter is to build a small
library that can easily link us to documentation about Python and PyMEL objects.
Building this library will illuminate how Maya, Python and PyMEL are designed,
and demonstrate why PyMEL is superior to maya.cmds. We will use the powerful
technique of type introspection to teach us more about Maya's node-based design
than any Hypergraph or static documentation can. Along the way we will explore
some core concepts that will reoccur throughout later chapters.

Creating your library

There are generally three different modes you will be developing in while
programming Python in Maya: using the mayapy interpreter to evaluate short bits
of code and explore ideas, using your Integrated Development Environment to work
on the bulk of the code, and using Maya's Script Editor to help iterate and test your
work. In this section, we'll start learning how to use all three tools to create a very
simple library.

Introspecting Maya, Python, and PyMEL

Using the interpreter

The first thing we must do is find your mayapy interpreter. It should be next to
your Maya executable, named mayapy or mayapy . exe. It is a Python interpreter that
can run Python code as if it were being run in a normal Maya session. When you
launch it, it will start up the interpreter in interactive mode, which means you enter
commands and it gives you results, interactively. The >>> and . . . characters in
code blocks indicate something you should enter at the interactive prompt; the code
listing in the book and your prompt should look basically the same. In later listings,
long output lines will be elided with . . . to save on space.

Most of the interactive samples can be run as code through doctest. See
e—" Appendix, Python Best Practices, for more information.

Start a mayapy process by double clicking or calling it from the command line, and
enter the following code:

>>> print 'Hello, Maya!'
Hello, Maya!
>>> def hello():

return 'Hello, Mayal!'

>>> hello()
'Hello, Maya!'

The first statement prints a string, which shows up under the prompting line.

The second statement is a multiline function definition. The . . . indicates the line
is part of the preceding line. The blank line following the . . . indicates the end of
the function. For brevity, we will leave out empty . . . lines in other code listings.

After we define our hello function, we invoke it. It returns the string "Hello,
Maya!", which is printed out beneath the invocation.

Finding a place for our library

Now, we need to find a place to put our library file. In order for Python to load the
file as a module, it needs to be on some path where Python can find it. We can see
all available paths by looking at the path list on the sys module.

>>> import sys
>>> for p in sys.path:

print p
C:\Program Files\Autodesk\Maya2013\bin\python26.zip
C:\Program Files\Autodesk\Maya2013\Python\DLLs
C:\Program Files\Autodesk\Maya2013\Python\1lib

[10]

Chapter 1

C:\Program Files\Autodesk\Maya2013\Python\lib\plat-win
C:\Program Files\Autodesk\Maya2013\Python\lib\lib-tk
C:\Program Files\Autodesk\Maya2013\bin

C:\Program Files\Autodesk\Maya2013\Python

C:\Program Files\Autodesk\Maya2013\Python\lib\site-packages

A number of paths will print out; I've replicated what's on my Windows system,
but yours will almost definitely be different. Unfortunately, the default paths don't
give us a place to put custom code. They are application installation directories,
which we should not modify. Instead, we should be doing our coding outside of all
the application installation directories. In fact, it's a good practice to avoid editing
anything in the application installation directories entirely.

Choosing a development root

Let's decide where we will do our coding. We'll call this location the development
root for the rest of the book. To be concise, I'll choose ¢ : \mayapybook\pylib

to house all of our Python code, but it can be anywhere. You'll need to choose
something appropriate if you are on OS X or Linux; we will use ~/mayapybook/
pylib as our path on these systems, but I'll refer only to the Windows path except
where more clarity is needed. Create the development root folder, and inside of it
create an empty file named minspect.py.

Now, we need to get C: \mayapybook\pylib onto Python's sys.path so it can be
imported. The easiest way to do this is to use the PYTHONPATH environment variable.
From a Windows command line you can run the following to add the path, and
ensure it worked:

> set PYTHONPATH=%PYTHONPATHS;C:\mayapybook\pylib
> mayapy.exe

>>> import sys

>>> 'C:\\mayapybook\\pylib' in sys.path

True

>>> import minspect

>>> minspect

<module 'minspect' from '...\minspect.py'>

The following is the equivalent commands on OS X or Linux:

$ export PYTHONPATH=SPYTHONPATH:~/mayapybook/pylib
$ mayapy

>>> import sys

>>> '~/mayapybook/pylib' in sys.path

True

>>> import minspect

>>> minspect

<module 'minspect' from '.../minspect.py'>

[11]

Introspecting Maya, Python, and PyMEL

There are actually a number of ways to get your development root onto Maya's path.
The option presented here (using environment variables before starting Maya or
mayapy) is just one of the more straightforward choices, and it works for mayapy

as well as normal Maya. Calling sys.path.append ('C:\\mayapybook\\pylib")
inside your usersetup.py file, for example, would work for Maya but not mayapy
(you would need to use maya.standalone.initialize to register user paths, as we
will do later).

Using set or export to set environment variables only works for the current process
and any new children. If you want it to work for unrelated processes, you may need
to modify your global or user environment. Each OS is different, so you should refer
to your operating system's documentation or a Google search. Some possibilities

are setx from the Windows command line, editing /etc/environment in Linux, or
editing /etc/launchd.conf on OS X. If you are in a studio environment and don't
want to make changes to people's machines, you should consider an alternative
such as using a script to launch Maya which will set up the PYTHONPATH, instead of
launching the maya executable directly.

Creating a function in your IDE

Now it is time to use our IDE to do some programming. We'll start by turning
the path printing code we wrote at the interactive prompt into a function in our
file. Open C: \mayapybook\pylib\minspect.py in your IDE and type the
following code:

import sys
def syspath() :
print 'sys.path:'
for p in sys.path:
print ' ' + p

Save the file, and bring up your mayapy interpreter. If you've closed down the one
from the last session, make sure C: \mayapybook\pylib (or whatever you are using
as your development root) is present on your sys.path or the following code will
not work! See the preceding section for making sure your development root is on
your sys.path.

>>> import minspect

>>> reload (minspect)

<module 'minspect' from '...\minspect.py'>

>>> minspect.syspath ()

C:\Program Files\Autodesk\Maya2013\bin\python26.zip
C:\Program Files\Autodesk\Maya2013\Python\DLLs
C:\Program Files\Autodesk\Maya2013\Python\1lib

[12]

Chapter 1

C:\Program Files\Autodesk\Maya2013\Python\lib\plat-win
C:\Program Files\Autodesk\Maya2013\Python\lib\lib-tk
C:\Program Files\Autodesk\Maya2013\bin

C:\Program Files\Autodesk\Maya2013\Python

C:\Program Files\Autodesk\Maya2013\Python\lib\site-packages

First, we import the minspect module. It may already be imported if this was an
old mayapy session. That is fine, as importing an already-imported module is fast
in Python and causes no side effects. We then use the reload function, which we
will explore in the next section, to make sure the most up-to-date code is loaded.
Finally, we call the syspath function, and its output is printed. Your actual paths
will likely vary.

Reloading code changes

It is very common as you develop that you'll make changes to some code and want
to immediately try out the changed code without restarting Maya or mayapy. You
can do that with Python's built-in reload function. The reload function takes a
module object and reloads it from disk so that the new code will be used.

When we jump between our IDE and the interactive interpreter (or the Maya
application) as we did earlier, we will usually reload the code to see the effect of our
changes. I will usually write out the import and reload lines, but occasionally will
only mention them in text preceding the code.

Keep in mind that reload is not a magic bullet. When you are dealing with simple
data and functions as we are here, it is usually fine. But as you start building class
hierarchies, decorators, and other things that have dependencies or state, the
situation can quickly get out of control. Always test your code in a fresh version
of Maya before declaring it done to be sure it does not have some lingering defect
hidden by reloading.

Though once you are a master Pythonista you can ignore these warnings and figure
out how to reload just about anything!

Exploring Maya and PyMEL

Now we will start digging into Maya and PyMEL. Let's begin by initializing Maya in
the mayapy interpreter so we can use more than just standard Python functionality.
We do this by calling maya.standalone.initialize, as shown in the following code:

>>> import maya.standalone

>>> maya.standalone.initialize()
>>> import pymel.core as pmc

>>> xform, shape = pmc.polySphere ()

[13]

Introspecting Maya, Python, and PyMEL

The import of pymel. core will implicitly call maya.standalone.initialize
automatically, but I do it explicitly here so it's clear what's going on. In the future,
you can generally skip the call to maya.standalone.initialize and just import
pymel.core.

There is a lot we can discover about these PYMEL objects, which represent

Maya nodes, using basic Python. For example, to see the type of either of our
objects, we can use the built-in type function (we will dig much deeper into types
later in this chapter).

>>> type (xform)

<class 'pymel.core.nodetypes.Transform's>
>>> type (shape)

<class 'pymel.core.nodetypes.PolySphere'>

To see the names of all the attributes on our shape, we can use the built-in
dir function:

>>> dir (xform)

['LimitType', 'MAttrClass', ..., 'zeroTransformPivots']

We can use the built-in getattr function with an object and a name of one of its
attributes to get the value of the attribute.

>>> getattr (xform, 'getShape')

<bound method Transform.getShape of nt.Transform(u'pSpherel') >
>>> getattr (xform, 'translate')

Attribute (u'pSpherel.translate')

= Note that we are using the getattr built-in Python function, -
not to be confused with the maya.cmds .getAttr function or its
\l equivalent PYMEL version. We will not use the getAttr function at
= all in this book. While using getAttr may be more familiar if you
Q are coming from the world of MEL and maya . cmds, using getattr
is familiar if you are coming from the much saner world of Python.
We should take full advantage of Python and do things the Python,
— not MEL, way. -

We can combine all of these techniques and use the inspect module from Python's
standard library (commonly referred to as the stdlib) to filter for interesting
information about our object.

>>> import inspect

>>> methods = []

>>> for a in dir(xform) :
attr = getattr (xform, a)
if inspect.ismethod (attr) :

[14]

Chapter 1

methods.append (attr)
>>> attrs = xform.listAttr()
>>> methods
[<bound method Transform. add of nt.Transform(u'pSpherel')s>, ...]
>>> attrs
[Attribute (u'pSpherel .message'), ...]

In the preceding code, we use the dir function to get every Python attribute from
our PyMEL transform instance, and then filter them into a list of methods. We then
use the 1istAttr method to get a list of Maya attributes on the transform. Based
on this data, we can begin to see how the node is structured. Maya attributes are
represented by instances of Attribute, and methods are usually helpers.

M Using for loops and if statements that append to a list is not a
Q good practice. We'll replace them with a much nicer syntax called
list comprehensions in Chapter 2, Writing Composable Code.

Creating an introspection function

We'll create a new function in minspect . py that will print out interesting
information about the object we pass it. Open C: \mayapybook\pylib\minspect.py
in your IDE or text editor. First, we will add an import to the top of the file (import
sys should already be there). As a matter of style, imports should always go at the
top of the file, one per line, divided into groups. Refer to Python's style guide, called
PEPS, at http://www.python.org/dev/peps/pep-0008/#imports. We will refer
back to PEPS8 several times throughout this book.

import pymel.core as pmc
import sys

Now let's use our earlier techniques and our understanding of Maya to print some
information about an object. We can use the name method on pPyNode to provide a
simple string representation for a node.

def info(obj) :
"""Prints information about the object."""
lines = ['Info for %s' % obj.name(),
'Attributes: ']
Get the name of all attributes
for a in obj.listAttr():
lines.append (' ' + a.name())
result = '\n'.join(lines)
print result

[15]

http://www.python.org/dev/peps/pep-0008/#imports

Introspecting Maya, Python, and PyMEL

You'll notice that instead of repeatedly printing, we put our data into a list and print
it only once at the end. We do this for three reasons.

First, appending substrings to a list of strings is faster than incrementally
concatenating (adding) them into a large string. Never concatenate many strings
together in Python. For example, consider the following expression.

'Hello, ' + username + ', it is ' + now + ' right now.'

Evaluating this expression creates several unnecessary intermediate strings that are
immediately thrown away. Ideally we should minimize transient objects.

Second, joining a list of strings is a well-known pattern. It is said to be more Pythonic
than string concatenations.

There is no formal definition for what Pythonic means, but here is an
M attempt: something is said to be Pythonic when enough people have said it
Q is Pythonic, or it is very similar to something that is Pythonic. You should
learn to use Pythonic idioms wherever possible, and I will point them
out when we run across them.

Finally and most importantly, building a list and printing at the end is more
maintainable and easier to test because we are separating decisions (creating
the result string) from dependencies (the output stream we print to). If this were
production code we'd remove the print (dependency) entirely so we can easily
test the decisions in info. We facilitate that future change by putting print into
the last line so our dependency is in one place instead of on every line.

o Note the use of the % operator in the info function. We
~ are using string formatting. If you are not familiar with
Q string formatting in Python, refer to Appendix, Python Best
Practices, for more information about it.

We can continue adding to this function to express more information about a
node. Try adding support for printing relatives by using obj.listRelatives()
if you are comfortable.

Understanding Python and MEL types

Python's type function, which we used earlier, returns the type of an object. Every
object in Python, including the type object, has a type, and PyMEL is no different.

>>> type ([])
<type 'list's>

[16]

Chapter 1

>>>

type (type ([1))

<type 'type'>

>>>

type (xform)

<class 'pymel.core.nodetypes.Transform's>

You may also be familiar with MEL's type strings. Because MEL does not possess a
rich type system like Python, typing (if it can be called that) is done with strings, as
we can see in the following example. The usages of MEL type strings are highlighted.

>>>

pmc.joint ()

nt.Joint (u'jointl")

>>>

[nt.

>>>

[nt.

>>>

[..

>>>

[..

pmc.polySphere ()

Transform(u'pSphere2'), nt.PolySphere (u'polySphere2"')]
pmc.ls (type='joint!')

Joint (u'jointl')]

pmc.ls (type='transform!')

.nt.Joint (u'jointl'), nt.Transform(u'pSpherel'), ...]

pmc.ls (type="'shape!')

.nt.Mesh (u'pSphereShapel'), ...]

This MEL type, as we'll call it, is very useful while scripting, but not very descriptive.
For example, we need to know in advance that a joint is a specific type of transform,
and thus returned from invoking pmc. 1s (type='transform'). This relationship is
not clearly expressed.

In contrast, these taxonomic relationships are much better expressed through
Python's type system. If we go to the PyMEL documentation for its Joint class, we
can see the following diagram of its type hierarchy:

DagNode

[17]

Introspecting Maya, Python, and PyMEL

This type hierarchy mimics Maya's underlying object oriented architecture, and we
can use it to understand things about nodes we may not be totally familiar with.

For example, we can know that a Joint has translate/rotate/scale attributes
because it is a subclass of Transform. A subclass inherits the behavior, such as the
attributes and methods, of its base class. A subclass is commonly called a child class,
and a base class is commonly called a parent class or superclass.

Notice in the example below how the _ bases__ attribute indicates that Transform
is the base class of the Joint class.

>>> j = pmc.joint ()

>>> j.type ()

u'joint!'

>>> type(J)

<class 'pymel.core.nodetypes.Joint's>

>>> type(j)._bases

(<class 'pymel.core.nodetypes.Transform's,)

>>> j.translate, j.rotate

(Attribute (u'joint2.translate'), Attribute(u'joint2.rotate'))

We will look into PyMEL's type hierarchies for the next few sections as a means of
understanding how PyMEL nodes work. Don't get intimidated if these concepts
are new. We won't be creating any of our own types in this section, and if you are
familiar with Maya's nodes, the type hierarchies we are going to examine should
be rather intuitive. Later in the book, once we are more familiar with Python and
PyMEL, several exercises will require creating our own types.

Using the method resolution order

Even more useful than the bases _ attribute is the mro_ attribute. Method
Resolution Order (MRO) is the order Python visits different types so it can
figure out what to actually call. You generally don't need to understand the

MRO mechanisms (they can be complex), but looking at the MRO will help you
understand all the type information about an object. Let's look at the MRO for the
Joint type:

>>> type(j)._ mro

(<class 'pymel.core.nodetypes.Joint's,

<class 'pymel.core.nodetypes.Transform'>,
<class 'pymel.core.nodetypes.DagNode's>,

<class 'pymel.core.nodetypes.Entity's>,

<class 'pymel.core.nodetypes.ContainerBase's>,
<class 'pymel.core.nodetypes.DependNode'>,
<class 'pymel.core.general.PyNode's>,

<class 'pymel.util.utilitytypes.ProxyUnicode'>,
<type 'object's)

[18]

Chapter 1

This makes sense: a joint node is a special type of transform node, which is a type of
DAG node, which is a type of dependency node, and so on, mirroring the inheritance
diagram we previously saw. The fact that reality meets expectation here is a great
testament to Maya and PyMEL.

When a call to j .name () is invoked, Python will walk along the MRO looking for
the first appropriate method to call. In the case of PyYMEL, looking at the MRO often
tells us a lot about how an object behaves. This is not always the case, however.
Python allows much more dynamic resolution mechanisms. We will not use these
mechanisms, such as __getattr or getattribute , much in this book, but
you should be aware that the MRO may not always tell the whole story.

Let's add the collection of type and MRO information into the minspect . py file's
info function:

def info(obj) :
"""Prints information about the object."""
lines = ['Info for %s' % obj.name(),
'Attributes: ']

Get the name of all attributes
for a in obj.listAttr():

lines.append (' ' + a.name())
lines.append ('MEL type: %s' % obj.type())
lines.append ('MRO: ')
lines.extend([' ' + t. name for t in type(obj). mro 1)
result = '\n'.join(lines)
print result

PyNodes all the way down

In Python, there's a saying, "Its objects all the way down." This means that
everything in Python, including numbers, strings, modules, functions, types, and

so on, are all just objects. In MEL and maya . cmds I like to say, "Its strings all the way
down." Because the type system in MEL and maya . cmds is so rudimentary, many
things must be handled through strings. And in PyMEL, I like to say, "It's PyNodes
all the way down."

The saying is adapted from "Its turtles all the way down." It is left
M
~ as an exercise to the reader to uncover the origin of this quote.
It may also be said in Python that, "Its dicts all the way down."
Python is a language of many clever sayings.

[19]

Introspecting Maya, Python, and PyMEL

Let's look at our PYMEL transform node to better understand how it is "PyNodes all
the way down."

>>> type (xform). mro

(<class 'pymel.core.nodetypes.Transform's,
<class 'pymel.core.nodetypes.DagNode'>,

<class 'pymel.core.nodetypes.Entity's>,

<class 'pymel.core.nodetypes.ContainerBase's>,
<class 'pymel.core.nodetypes.DependNode'>,
<class 'pymel.core.general.PyNode'>,

<class 'pymel.util.utilitytypes.ProxyUnicode'>,
<type 'object'>)

>>> type (xform.translate). mro

(<class 'pymel.core.general.Attribute's>,

<class 'pymel.core.general.PyNode'>,

<class 'pymel.util.utilitytypes.ProxyUnicode'>,
<type 'object'>)

There are a number of very interesting things going on in this short listing.

First, our two types —along with all PyMEL types, in fact —inherit from both pyNode
and ProxyUnicode (as well as object, which all Python types inherit from). The
PyNode type represents any Maya node (DAG/dependency nodes, attributes, Maya
windows, and so on). Vitally, Attributes are also PyNodes. If we look at the PyMEL
help for pyNode, we can see the distinguishing features of PyNodes are that they have
a name/identity, connections, and history.

Second, anything that inherits from DependNode has attributes. So predictably,
Attributes are not a DependNode, but our Transform is.

Third, Transformis also a DagNode. We can use our knowledge of Maya (or graph
theory, if you're into that) to infer that this means the object can have a parent,
children, instances, and so on. This is a great example where our knowledge of
Maya maps directly onto PyMEL, and we aren't required to learn a new paradigm to
understand how the PyMEL framework works.

We build custom Maya nodes in Chapter 7, Taming the Maya API.

Finally, if we look at the _ mro__ for a Joint, we will see the following information:

>>> type(pmc.joint()). mro
(<class 'pymel.core.nodetypes.Joint's,
<class 'pymel.core.nodetypes.Transform'>,

<type 'object's)

[20]

Chapter 1

We can immediately understand much of how a PyMEL Joint works if we
already understand Transform. In fact, everything about Transformis also true
for every Joint. The deduction that every Joint behaves like a Transform is
known as the Liskov substitution principle. It states, roughly, that if S is a subclass
of T, then a program can use an instance of S instead of T without a change in behavior. It
is a fundamental principle of good object-oriented design and manifests itself in
well-designed frameworks such as PyMEL.

The fact that types inherit the behavior of their parents is important to keep in mind
as you go through the rest of this book and program with PyMEL. Don't worry if
you don't fully understand how inheritance works or how to best leverage it. It will
become clearer as we proceed on our journey.

The ProxyUnicode class should be treated as an implementation detail.
The only important user-facing detail is that it allows PyNodes to have
string methods on them (. replace, . strip, and so on). As of writing
~ this book, I've never used the string methods on a PyNode. Maybe there
are valid uses but I can't imagine them. There are always better, more
explicit ways of dealing with the node. If you need to deal with its name,
call a name-returning method (name (), longName (), and the like) and
manipulate that. Use the rename method to rename the node.

Understanding PyMEL data and math types

PyMEL's intuitive use of type hierarchies does not end with Maya node types. It also
provides a very useful wrapper around Maya's mathematical data types, including
vectors, quaternions, and matrices. These types are located in the pymel.core.
datatypes namespace.

Let's take a closer look at xform's transform information.

>>> xform.translate

Attribute (u'pSpherel.translate')
>>> t = xform.translate.get ()
>>> print t

[0.0, 0.0, 0.0]

[21]

Introspecting Maya, Python, and PyMEL

The translation value of the sphere transform, which is highlighted, appears to be a
list. It isn't. The translation value is an instance of pymel . core.datatypes.Vector.
Sometimes we need to more aggressively introspect objects. I think this is one of the
few areas where PyYMEL made a mistake. Calling str (t) returns a string that looks
like it came from a list, instead of looking like it came from a vector. Make sure
you have the correct type. I've spent hours hunting down bugs where I was using a
Vector instead of a 1ist, or vice versa.

>>> vect = xform.translate.get ()

>>> 1lst = [0.0, 0.0, 0.0]

>>> str(vect)

'[0.0, 0.0, 0.0]"

>>> str(lst)

'[0.0, 0.0, 0.0]"

>>> print t, lst # The print implicitly calls str(t)
(0.0, 0.0, 0.0] [0.0, 0.0, 0.0]

>>> repr(t) # repr returns a more detailed string for an object
'dt.Vector([0.0, 0.0, 0.0]1)"

>>> repr(lst)

'[0.0, 0.0, 0.0]"

Using repr as highlighted in the preceding code shows us that vect is not a list. It
is one of PyMEL's special data types. This has a number of benefits, despite its bad
string representation.

First of all, vector and other data types are list-like objects. The __iter method
means we can iterate over it, just like a list.

>>> t = xform.translate.get ()
>>> for c in t:

print c

o O O
o o o -

The getitem method means we can look up an index.

>>> t[0], t[1], t[2]
(0.0, 0.0, 0.0)

But it also behaves more like we would expect it to mathematically. When we add
two vectors, we get the summed vector, instead of a six item list.

>>> [1, 2, 3] + [4, 5, 6] # Regular Python lists
(1, 2, 3, 4, 5, 6]

>>> repr(t + [1, 2, 3])

'dt.Vector([1.0, 2.0, 3.0])"

[22]

Chapter 1

And finally, vector has several useful methods on it, including name-based
accessors and helper methods.

>>> t.x += 5 # Familiar name-based access
>>> t.y += 2

>>> t.x

5.0

>>> t.length() # And helpers!

5.385...

This sort of design, where a custom type implements several different interfaces or
protocols, is powerful. For example, if you wanted to move a transform by some
vector, you can just write the following code:

>>> def move along x(xform, vec):
t = xform.translate.get ()
t[0] 4= vec[O0]

. xform.translate.set (t)

>>> j = pmc.joint ()

>>> move_along x(j, [1, 0, 0])

>>> j.translate.get ()

dt.Vector([1.0, 0.0, 0.0])

>>> move_along x(j, j.translate.get())

>>> j.translate.get ()

dt.Vector([2.0, 0.0, 0.0])

Notice that at no point did we need to check whether vec was an instance of list or
of vector. We just require it to implement __getitem__ so we can access an index.
Think about how much more natural this pattern makes using vector, Quaternion,
Matrix, and the other data types in pymel.core.datatypes

When you need to represent some mathematical data or measurement, take a look
at the pymel . core.datatypes namespace. The classes and functions there are quite
important and useful!

Leveraging the REPL

The info function we've been building isn't just a useful learning exercise. It can
be helpful in everyday programming. A major advantage of dynamic, interpreted
languages such as Python has been their REPL: Read-Evaluate-Print Loop (REPL).
We've actually been using a REPL all throughout this chapter.

Let's write some simple code in the interpreter to demonstrate the REPL:

>>> pmc.joint
<function joint at 0x0...>

>>>

[23]

Introspecting Maya, Python, and PyMEL

Now let's see how this fits into the REPL flow:

1. The interpreter prompts for input, indicated by the >>> characters.

2. We type pmc. joint and hit Enter.

3. The input string pmc. joint is parsed into a data structure. This is the read.
4

The interpreter evaluates the data structure, finding PyMEL's
joint function.

5. The interpreter prints the result to the output stream.

6. The interpreter prompts for more input (the loop).

The alternative to the REPL is the Edit-Compile-Run Loop of compiled languages.
This is a much longer process, often lasting minutes instead of seconds and requiring
a full restart of the application. In recent years, several compiled languages have
created interpreters or REPL environments, but this is unavailable to C++ in Maya
right now.

It stands to reason that anything we can do to improve our REPL experience will
help us learn and explore our language and environment more effectively. Whereas
minspect.info allows us to see runtime information about some object, next we'll
write a function to bridge the gap from runtime information to static documentation.

Building the pmhelp function

Python has a built-in help function that, when paired with the REPL described
previously, is very useful for rapid exploration.

>>> help

Type help() for interactive help, or help(object) for help about
object.

However, help can be difficult to use with PYMEL (along with many other libraries).
The documentation may be missing from the actual object, or may be defined
somewhere else. Commonly, the documentation is too verbose to read comfortably
in a terminal window. And in the case of a GUI Maya session, it is just more
convenient to have documentation in your browser than in the Script Editor.

To better use the online documentation, we'll write an minspect . pmhelp function
that will link us to PyMEL's excellent online documentation.

[24]

Chapter 1

As useful as something like pmhelp can be, this exercise will be even
M more useful for understanding how PyMEL and Maya work. So even if
Q you don't think you have a use for pmhelp or if you get stuck with some
of the more technical snippets in this chapter, keep going and at least read
through how we build the function.

Calling help (pmc.polySphere) is sort of like calling print pmc.polySphere.
doc__. The help function actually uses the interesting pydoc module, which can do
much more, but printing a docstring is the most common use case. A docstring is
the triple-quoted string that describes a function/ method/class, as we had for our
minspect.info function. The triple-quoted string gets placed into the function or
method's doc_ attribute.

Invoking the pmhelp function will bring us to the PyMEL web help page for an object
or name, searching for it if we do not get a direct match. We'll be able to use this
function from within the mayapy interpreter, the Script Editor in Maya, and even a
shelf button. We will use the introspection techniques we've learned to get enough
information to search properly.

Let's start by typing up our functions into pseudocode. Pseudocode is prose that we
will eventually turn into actual code. It declares exactly what our function needs to do.

Function converts a python object to a PyMEL help query url.
If the object is a string,
return a query string for a help search.
If the object is a PyMEL object,
return the appropriate url tail.
PyMEL functions, modules, types, instances,
and methods are all valid.
Non-PyMEL objects return None.

Function takes a python object and returns a full help url.
Calls the first function.
If first function returns None,
just use builtin 'help' function.
Otherwise, open a web browser to the help page.

Creating a query string for a PyMEL object

First, open a web browser to the PyMEL help so we can understand the URL
schema. For our examples, well use the Maya 2013 English PyMEL help at
http://download.autodesk.com/global/docs/maya2013/en_us/PyMel/
index.html.

[25]

 http://download.autodesk.com/global/docs/maya2013/en_us/PyMel/ index.html
 http://download.autodesk.com/global/docs/maya2013/en_us/PyMel/ index.html
 http://download.autodesk.com/global/docs/maya2013/en_us/PyMel/ index.html

Introspecting Maya, Python, and PyMEL

Then, open C: \mayapybook\pylib\minspect .py and write the following code at
the bottom of the file (the comments with numbers are for the explanation following
the code sample and do not need to be copied):

def py to helpstr(obj): #(1)

return None

def test py to helpstr(): #(2)
def dotest (obj, ideal): #(3)
result = py to helpstr (obj)
assert result == ideal, '%s != %$s' % (result, ideal) #(4)
dotest ('maya rocks', 'search.html?g=maya+rocks') #(5)

Let's pick apart the preceding code.

1.

The leading underscore means this is a protected function. It indicates that
we shouldn't call it from outside the module. It is for implementation only.

This function will contain all of our tests for the different possible objects we
can pass in. We can write what we expect, and then assert that our function
returns the correct result.

Defining a function within a function is normal in Python. Since we don't
need dotest outside of our test function, just define it inside.

The assert statement means that if the expression following the assert
is False, raise an AssertionError with the message after the comma. So
in this case, we're saying if the result is not equal to ideal, raise an error that
tells the user the gotten and ideal values.

We call our inner function. All of the rest of our tests for this function will
look very similar.

And in the mayapy interpreter, you can test the code by evaluating the following:

>>> import minspect #(1)

>>> reload (minspect)

<module 'minspect' from '...\minspect.py'>

>>> minspect.test py to helpstr() #(2)

Traceback (most recent call last): #(3)

AssertionError:

Let's walk over how we are running our tests:

1.
2.
3.

Import and reload minspect.
We invoke our test function, which evaluates our assertion.

Since we didn't actually implement anything, our assertion fails and an
AssertionError is raised.

[26]

Chapter 1

The next step is to implement code to pass the test:

def py to helpstr(obj):
if isinstance (obj, basestring) :
return 'search.html?g=%s' % (obj.replace(' ', '+'))

return None

Now we can run our test by calling test_py to_helpstr again and looking for
an error:

>>> reload(minspect) .test py to helpstr()

No errors. Congratulations! You have just done Test Driven Development
(TDD), which puts you into an elite group of programmers. And we're only in
the first chapter!

o Test Driven Development is a technique of developing code where
~ you write your tests first. It is a really an excellent way to program,
Q though not always possible in Maya. See Appendix, Python Best
Practices, for more information about TDD.

Creating more tests

Let's go ahead and write more test cases. We will add tests for the pymel . core.
nodetypes module, the pymel.core.nodetypes.Joint type and instance, the
Joint .getTranslation method, and the pymel.core.animation.joint function.

def test py to helpstr():
def dotest (obj, ideal):

result = py to helpstr (obj)
assert result == ideal, '%s != %s' % (result, ideal)
dotest ('maya rocks', 'search.html?g=maya+rocks')

dotest (pmc.nodetypes,
'generated/pymel.core.nodetypes.html’
'#module-pymel.core.nodetypes')

dotest (pmc.nodetypes.Joint,
'generated/classes/pymel.core.nodetypes/"’
'pymel.core.nodetypes.Joint.html'
"#pymel.core.nodetypes.Joint ')

dotest (pmc.nodetypes.Joint (),
'generated/classes/pymel.core.nodetypes/"’
'pymel.core.nodetypes.Joint.html'
"#pymel.core.nodetypes.Joint')

dotest (pmc.nodetypes.Joint () .getTranslation,

[27]

Introspecting Maya, Python, and PyMEL

'generated/classes/pymel.core.nodetypes/"’
'pymel.core.nodetypes.Joint.html'
"#pymel.core.nodetypes.Joint .getTranslation')
dotest (pmc.joint,
'generated/functions/pymel.core.animation/"'
'pymel.core.animation.joint.html'
"#pymel.core.animation.joint"')

I got the ideal values simply by going to the PYMEL online help and copying the
appropriate part of the URL. Building code is simpler when your expectations are
crystal clear!

The actual implementation of py to_helplstr can be considered simple or
complex depending on your experience with Python. It uses lots of double-
underscore attributes and demands some understanding of Python's types and
inner workings. Memorizing every detail of every line is less important than
understanding the basic idea of the code.

We'll use various double underscore attributes suchas class and name .
They are called either dunder methods or magic methods, though there's nothing
magical about them. Single leading underscore attributes, as we've seen, indicate
implementation or protected attributes that callers outside of a module or class should
not use. Double leading underscore indicate private attributes, though you can think
of them the same as single leading underscore attributes (they cannot be called in a
straightforward manner, however). Magic methods are generally not called directly
but are for protocols such as the __getitem method we saw earlier allowing an
object to be indexed like a list or dictionary.

We'll add support for the different types of objects in the order they are listed in the
test function until every test passes. We'll start with modules.

Inthe _py to_helpstr function, we make heavy use of the
isinstance function. This sort of design may seem intuitive, but it
\‘

~ is typically a bad practice to check if something is an instance of the
class. It is generally better to check if something has functionality or
behavior rather than checking what type it is. In this case, though, we
do actually want to check if something is an instance. The type of the
object is the behavior we are checking for.

[28]

Chapter 1

Adding support for modules

pymel.core.nodetypes is a module, as are pymel and pymel.core. The
implementation of _py to_helpstr for modules is straightforward. We use the
_ name__ attribute to identify the module (we will see other uses for _name_
throughout this book).

>>> import pymel.core.nodetypes
>>> pymel.core.nodetypes. name
'pymel.core.nodetypes'

To test if something is a module, we can check if the type is the module type
by importing the types module and checking if an object is an instance of
types.ModuleType.

>>> import types
>>> isinstance (pymel.core.nodetypes, types.ModuleType)
True

We will continue to use the types module throughout the rest of this chapter.
The code should be mostly self-explanatory so I will only remark on the members
we use when their usage is not obvious.

We also need to understand how documentation for modules is laid out in PyMEL's
help. URLs to module documentation take the following form:

<base_urls>/generated/<module name>.html#module-<module names>

To support modules, the py to_helpstr function should look like the following
(don't forget to add import types at the top of minspect.py):

def py to helpstr(obj):
if isinstance(obj, basestring) :
return 'search.html?g=%s' % (obj.replace(' ', '+'))
if isinstance(obj, types.ModuleType):
return ('generated/%(module)s.html#module-%(module)s' %
dict (module=obj. name))
return None

If we reload our module and run the test_py to_helpstr test function, you will
see that the test now passes for pmc.nodetypes and fails for pmc.nodetypes.Joint.

[29]

Introspecting Maya, Python, and PyMEL

Adding support for types

To add support for types such as pymel.core.nodetypes.Joint, we will use the
same technique as we did for modules. We will use the module and name
attributes of the Joint type:

>>> pmc.nodetypes.Joint

<class 'pymel.core.nodetypes.Joint'>
>>> pmc.nodetypes.Joint. name
'Joint!'

>>> pmc.nodetypes.Joint._ module
'pymel.core.nodetypes'

The PyMEL help format for types is almost the same as the one for modules:

generated/classes/<module>/<modules>.<type>.html#<modules>.<type>

We'll treat a type as the default (last) case. If we pass in something that is not a
type, we can just get the object's type and use that. Let's add support for types
into our function:

def py to_helpstr(obj):
if isinstance (obj, basestring):
return 'search.html?g=%s' % (obj.replace(' ', '+'))
if isinstance(obj, types.ModuleType) :
return ('generated/% (module)s.html#module-% (module)s' %
dict (module=obj. name_))
if not isinstance(obj, type):
obj = type(obj)
return ('generated/classes/%(module)s/!
'% (module) s.% (typename) s.html'
'#% (module) s.% (typename) s' % dict(
module=obj. module ,
typename=obj. name_))

If you reload and invoke the test function, the test should fail for the
Joint.getTranslation method.

Adding support for methods

When we use something like mylist.append (1), we can say we are "invoking the
append method with an argument of 1 on the 1ist instance named 'mylist'."
Methods are things we call on an instance of an object. Things we call on a module
are called functions, and we'll cover them after methods.

[30]

Chapter 1

It's important to define what a method is with precise vocabulary. While speaking
with other people, it's not so important if you mix up "function" with "method", but
when you're writing code, you must be very clear what you are doing.

The following code creates a Joint and inspects the type of the instance's
getTranslation method. We can see the method's type is instancemethod,
and it is an instance of types.MethodType:

>>> joint = pmc.nodetypes.Joint ()

>>> type (joint.getTranslation)

<type 'instancemethod'>

>>> isinstance (joint.getTranslation, types.MethodType)
True

There are actually several other types of methods in Python. Fortunately, they are
largely unimportant for our purposes here. We'll run through them quickly, in case
you want to follow up on your own.

>>> class MyClass (object) :
def mymethod (self) :
pass
@classmethod # (1)
def myclassmethod(cls) :
pass
@staticmethod # (2)
def mystaticmethod() :
. pass
>>> MyClass () .mymethod # (3)
<bound method MyClass.mymethod of < main .MyClass object athh...
>>> MyClass.mymethod # (4)
<unbound method MyClass.mymethod>

Given this class definition, we can observe the following method types:

* Class methods: These use the @classmethod decorator and are called
with the type of the instance (c1s) instead of the instance itself. We cover
decorators in Chapter 4, Leveraging Context Manager and Decorators in Maya.

* Static methods: These use the @staticmethod decorator and are called with
no cls or self argument. | always advise against the use of static methods.
Just use module functions instead. And in fact, static methods aren't really
methods when you inspect their type; they are functions as described in the
next section.

[31]

Introspecting Maya, Python, and PyMEL

e Bound methods: MyClass () .mymethod refers to a bound method. A method
is said to be bound when it is associated with an instance. For example, we
can say bound = MyClass () .mymethod. When we later invoke bound (), it
will always refer to the same instance of MyClass.

* Unbound method: MyClass.mymethod refers to an unbound method. Note
we're accessing mymethod from the class itself, not an instance. You must
call unbound methods with an instance. Calling MyClass () .mymethod ()
and MyClass.mymethod (MyClass ()) is roughly equivalent. You rarely use
unbound methods directly.

Methods also have three special attributes that link them back to the type and
instance they are bound to. The im_self attribute refers to the instance bound to
the method. The im_class attribute refers to the type the method is declared on.
The im_func refers to the underlying function.

>>> MyClass () .mymethod.im self

< main .MyClass object at 0x0...>
>>> MyClass () .mymethod.im class
<class ' main_ .MyClass'>

>>> MyClass () .mymethod.im func
<function mymethod at 0x0...>

The important one for us is the im_class attribute so we can get the class for
this method.

Let's go ahead and add support for methods. The pattern should be very familiar
now. The help string format is just the same for types, but with an additional " . "
and the name of the method. The new code is highlighted in the following listing;:

def py to helpstr(obj):
if isinstance(obj, basestring) :
return 'search.html?g=%s' % (obj.replace(' ', '+'))
if isinstance(obj, types.ModuleType) :
return ('generated/% (module)s.html#fmodule-% (module)s' %
dict (module=obj. name_))
if isinstance(obj, types.MethodType):
return ('generated/classes/%(module)s/!
'% (module) s.% (typename) s.html'
'#% (module) s.% (typename) s.% (methname) s' % dict(
module=obj. module ,
typename=obj.im class. name ,
methname=obj. name))
if not isinstance(obj, type):
obj = type (obj)

[32]

Chapter 1

return ('generated/classes/% (module)s/’
'% (module) s.% (typename) s.html'
'#% (module) s.% (typename)s' % dict(
module=obj. module ,

typename=obj. name))

Adding support for functions

A function is just like a method, but it isn't part of a class.

>>> def spam() :
def eggs():
pass
pass

The preceding code contains two functions: spam and eggs. Basically, any def
that isn't part of a class definition (the first argument is not self or cls in regular
methods and class methods described previously) is considered a function. In
addition to these earlier simple functions, lambdas and staticmethods are also
functions, as we see in the following code:

>>> getl0 = lambda: 10
>>> type(getl0)
<type 'function's>
>>> class MyClass (object) :
@staticmethod
def mystaticmethod () : pass
>>> type (MyClass.mystaticmethod)
<type 'function's>
>>> type (MyClass () .mystaticmethod)
<type 'function's>

Both get10 and MyClass.mystaticmethod are considered functions by Python and
will be handled by the logic in this section.

The PyMEL help URL for functions is straightforward and in fact very similar
to types. Implementing functions has no surprises. The code added for handling
functions is highlighted in the following listing:

def py to_helpstr(obj):
if isinstance(obj, basestring) :
return 'search.html?g=%s' % (obj.replace(' ', '+'))
if isinstance (obj, types.ModuleType) :

return ('generated/% (module)s.html#module-% (module)s' %
dict (module=obj. name))

[33]

Introspecting Maya, Python, and PyMEL

if isinstance (obj, types.MethodType) :
return ('generated/classes/% (module)s/’

'% (module) s. % (typename) s.html'

'#% (module) s. % (typename) s. % (methname)s' % dict(
module=obj. module |,
typename=obj.im class. name ,
methname=obj. name))

if isinstance(obj, types.FunctionType):
return ('generated/functions/% (module)s/'

'% (module) s.% (funcname) s.html'

'#% (module) s.% (funcname)s' % dict(
module=obj. module ,
funcname=obj. name))

if not isinstance(obj, type):
obj = type (obj)
return ('generated/classes/% (module)s/’
'% (module) s.% (typename) s.html'
'#% (module) s.% (typename)s' % dict(

module=obj. module ,

typename=obj. name))

If you reload minspect and run the test_py_ to_helpstr test function, no error
should be raised by the assert. If there is, ensure your test and implementation
code is correct.

Adding support for non-PyMEL objects

Right now we only have tests and support for PyMEL objects. We can add support
for non-PyMEL objects by returning None if our argument does not have a module
under the pymel namespace. The check can be a straightforward function using
several of the things we've learned about the special attributes of objects. Add the
following function somewhere in minspect . py:

def is pymel (obj) :
try: # (1)
module = obj. module # (2)
except AttributeError: # (3)
try:
module = obj. name # (4)
except AttributeError:
return None # (5)
return module.startswith('pymel') # (6)

[34]

Chapter 1

This logic is based on what we already know about Python objects. All user-defined
types and instances have a _ module__ attribute, and all modules havea _ name_
attribute. Let's walk through the preceding code.

1. We use try/except in this function, rather than checking if attributes exist.
This is discussed in the following section, Designing with EAFP versus LBYL.
If you are not familiar with Python's error handling mechanisms including
try/except, we discuss it more in Chapter 4, Leveraging Context Managers and
Decorators in Maya.

2. Ifobjhasa_ module__ attribute (for example, if it is a type or function),
we will use that as the namespace.

If it does not, an AttributeError will be raised, which we catch.

Try to get the _ name__ attribute, assuming obj is a module. There's a
possibility obj hasa _ name_ and no _ module__ but is not a module.
We will ignore this possibility (see the section Code is never complete later in
this chapter).

If obj does not have a __name__, give up, and return None.
If we do find what we think is a module name, return True if it begins with
the string "pymel" and False if not.

We don't need to test this function directly. We can just add another test to our
existing test function. The new tests are in highlighted in the following code.

def test py to helpstr():
def dotest (obj, ideal):

result = py to helpstr(obj)
assert result == ideal, '%s != %s' % (result, ideal)
dotest ('maya rocks', 'search.html?g=maya+rocks')

dotest (pmc.nodetypes,
'generated/pymel.core.nodetypes.html'
'#module-pymel.core.nodetypes')

dotest (pmc.nodetypes.Joint,
'generated/classes/pymel.core.nodetypes/"’
'pymel.core.nodetypes.Joint.html'
"#pymel.core.nodetypes.Joint')

dotest (pmc.nodetypes.Joint (),
'generated/classes/pymel.core.nodetypes/"’
'pymel.core.nodetypes.Joint.html'
'#pymel.core.nodetypes.Joint')

dotest (pmc.nodetypes.Joint () .getTranslation,
'generated/classes/pymel.core.nodetypes/"’
'pymel.core.nodetypes.Joint.html'
"#pymel.core.nodetypes.Joint .getTranslation')

[35]

Introspecting Maya, Python, and PyMEL

dotest (pmc.joint,
'generated/functions/pymel.core.animation/"'
'pymel.core.animation.joint.html'
"#pymel.core.animation.joint"')

dotest (object (), None)

dotest (10, None)

dotest ([], None)

dotest (sys, None)

Reload minspect and run the test function. The first new test should fail. Let's go
in and edit our code in minspect .py to add support for non-PyMEL objects. The
changes are highlighted.

def py to helpstr(obj):
if isinstance(obj, basestring) :
return 'search.html?g=%s' % (obj.replace(' ', '+'))
if not is pymel (obj):
return None
if isinstance(obj, types.ModuleType) :
return ('generated/% (module)s.html#module-% (module)s' %
dict (module=obj._ name_))
if isinstance (obj, types.MethodType) :
return ('generated/classes/% (module)s/'
'% (module) s.% (typename) s.html'
'#% (module) s.% (typename) s.% (methname) s' % dict(
module=obj. module ,
typename=obj.im class. name__,
methname=obj. name_))
if isinstance(obj, types.FunctionType) :
return ('generated/functions/% (module)s/'
'% (module) s. % (funcname) s.html'
'#% (module) s.% (funcname)s' % dict(
module=obj. module ,
funcname=obj. name_))
if not isinstance(obj, type):
obj = type (obj)
return ('generated/classes/% (module)s/'
'% (module) s.% (typename) s.html'
'#% (module) s.% (typename)s' % dict(
module=obj. module ,
typename=obj. name))

It's important that the _is_pymel check comes early so we don't try to generate
PyMEL URLSs for non-PyMEL objects. We now have a relatively complete function
we can be proud of. Reload and run your tests to ensure everything now passes.

[36]

Chapter 1

Designing with EAFP versus LBYL

In _is_pymel, we used a try/except statement rather than check if an object has

an attribute. This pattern is called Easier to Ask for Forgiveness than Permission
(EAFP). In contrast, checking things ahead of time is called Look Before You Leap
(LBYL). The former is considered much more Pythonic and generally results in
shorter and more robust code. Consider the differences between the following three
ways of writing the second try/except inside the _is_pymel function.

Version 1

>>> module = None

>>> if isinstance (obj, types.ModuleType) :
module = obj. name

Version 2

>>> module = None

>>> 1f hasattr(obj, ' name '):
module = obj. name

Version 3
>>> module = getattr(obj, ' name ', None)

Version 4
>>> try:
module = obj. name
. except AttributeError:
module = None

Version 1 is thoroughly LBYL and should generally be avoided. We are interested
inthe name attribute, not whether obj is a module or not, so we should look for
or access the attribute instead of checking the type. Versions 2 and 3 are using LBYL
by checking for the _ name__ attribute but would be an improvement over version
1 since they are not checking the type. These two versions are about the same, with
version 3 being more concise. Version 4 is fully EAFP. Use the style of code that
results in the most readable result, but err on the side of EAFP.

There is much more to the debate, and we'll be seeing more instances of EAFP
versus LBYL throughout this book.

[37]

Introspecting Maya, Python, and PyMEL

Code is never complete
Note that the code in this chapter may not be complete. As Donald Knuth said:

Beware of bugs in the above code; I have only proved it correct, not tried it.

There are likely problems with this chapter's code and undoubtedly bugs in the rest
of this book. While math may be provably correct, production code that depends on
large frameworks (like PyMEL), which themselves rely on complex, stateful systems
(like Maya) will never be provably correct. No practical amount of testing can ensure
there are no bugs for edge cases.

But there are many types of bugs. In _py to_helpstr, a user can pass in a string that
may be illegal for a URL. If this were externally released code, we'd want to handle
that case, but for personal or in-house code (the vast majority of what you'll write)

it is perfectly fine to have "bugs" like this. When the need arises to filter problematic
characters, you can add the support.

In the same way, when we find a PyYMEL object that isn't compatible with _is
pymel, or some object that causes an unhandled error, we can edit the code to solve
that problem.

The alternative is to try and write bug-free code all the time while predicting all the
ways your code can be called. Good luck!

Understanding that we can't write perfect code is one reason why having automated
tests is so important. When we find a use case we need to support, we can just go back
to our test function, add the test, make sure our test fails, implement the change, make
sure our test passes, and then refactor our implementation to make sure our code looks
as good as it can. We cover refactoring in Chapter 2, Writing Composable Code.

Opening help in a web browser

Now that all of our tests pass, we can put together our actual pmhelp function. We
need to assemble our generated URL tail with a site, and open it in the web browser.
This is actually very simple code because Python comes with so many batteries
included. The following code should go into minspect.py:

import webbrowser # (1)
HELP_ROOT URL = ('http://download.autodesk.com/global/docs/"’
'maya2013/en _us/PyMel/')# (2)

def pmhelp(obj): # (3)
""rGives help for a pymel or python object.

[38]

Chapter 1

If obj is not a PyMEL object, use Python's built-in
'help' function.
If obj is a string, open a web browser to a search in the
PyMEL help for the string.
Otherwise, open a web browser to the page for the object.
tail = py to helpstr(obj)
if tail is None:

help(obj) # (4)
else:

webbrowser.open (HELP_ROOT URL + tail) # (5)

Let's walk through the preceding code.

1.

5.

The webbrowser module is part of the Python standard library and allows
Python to open browser pages. It's awesome!

Define the documentation URL root. Point it to the correct source for your
version of Maya and PyMEL.

Define the pmhelp function, and give it a docstring because we are
responsible programmers.

If py to_helpstr returns None, just use the built-in help function.

If py to_helpstr returns a string, open the URL.

You can now reload your module once more and try it out, for real.

Will open a browser and search for "joint".

>>> minspect.pmhelp ('joint')

Will open a browser to the pymel.core.nodetypes module page.
>>> minspect.pmhelp (pmc.nodetypes)

Will print out help for integers.

>>> minspect.pmhelp (1)

Help on int object:

class int (object)

int (x[, basel) -> integer

Note that doing minspect . pmhelp (minspect.pmhelp) is totally valid and will show
your docstring. This sort of robustness is the hallmark of well-designed code.

We can also hook up pmhelp to be available through Maya's interface: select an
object, hit the pmhelp shelf button, and a browser page will open to its help page.
Just put the following Python "code in a string" into a shelf button (all one line,
broken into two here for print):

"import pymel.core as pmc; import minspect;

minspect.pmhelp (pmc.selected () [0])"

[39]

Introspecting Maya, Python, and PyMEL

If you're not sure how to do this, don't worry. We will look more at using Python
code in shelf buttons in Chapter 5, Building Graphical User Interfaces for Maya. Also be
aware this code will error if nothing is selected, but you'll see how to better handle
high-level calls from shelf buttons in Chapter 2, Writing Composable Code.

You may also notice we didn't write any automated tests for pmhelp like we did
for _py_to_helpstr. Normally I would, especially if this function grows at all. But
for now, it's so simple and would take more advanced techniques so we should be
pretty confident to leave it alone.

Summary

In this chapter, we learned how Maya and Python work together to create PyMEL.
First we learned how to use the mayapy interpreter, and how to create and use
Python libraries and modules. Then we explored PyMEL via introspection: how it
mirrors Maya concepts such as DAG nodes and attributes, how every Maya object
is represented as a first-class PYMEL node, and PyMEL's special math data types.
Finally, we built a function that can bring us to the PyYMEL online help when we
want more information about a PyYMEL node. Along the way, we learned about
concepts central to Python, such as types, the standard library, magic methods, a
definition of the term Pythonic, and easier to ask for forgiveness than permission
versus look before you leap.

In the next chapter, we will learn more about writing practical Maya Python with
PyMEL by investigating the important concept of composability.

[40]

Writing Composable Code

In this chapter, we'll explore the concept of composable code. We start by defining
the term. We then examine composable and non-composable examples to better
understand what composability is, and improve code by refactoring. We will learn
about important techniques to maximize composability, such as predicates, list
comprehensions, contracts, closures, and docstrings. We put these techniques to
work by building a library to convert a hierarchy of transforms into joints. After
that, we compose this library into a configurable higher-level tool for creating
characters. Finally, we will look at some issues and solutions surrounding PyMEL,
composability, and performance.

Defining composability

The idea of composability is to write code as small and well-defined units that
can be combined with other units in flexible and predictable ways. Composable
code is decoupled and cohesive. That is, the code has few dependencies and is
responsible for a single responsibility. Writing composable code is the key to
creating maintainable systems and libraries you'll use for years.

o A unit is a function, class, or method. It is generally the smallest
~ piece of independently useful code, and should be smaller than a
Q module or group of classes (system). There is no black and white
definition, so prefer smaller and simpler to larger and more complex.

Writing Composable Code

Maya's utility nodes, such as the MultiplyDivide node, are examples of composable
units. They are very clear in their inputs, outputs, and descriptions of what they

do. The input to a MultiplyDivide node can be a number from any source, such as
a Maya transform, another utility node, or a constant. The MultiplyDivide node
does not care, as long as the input is a number. The node just does what it is asked

to do—multiply or divide two numbers —and returns the result. It has no undefined
behavior, since it will error for any unexpected inputs, and does not rely on system
state at all. It relies only on its inputs.

A utility node such as MultiplyDivide, then, can be said to have clear contracts.
The idea of contracts is a key to writing composable code and is something we'll
explore in greater detail later in this chapter. But first, let's look at an example of
non-composable code.

Identifying anti-patterns of composability

In contrast to Maya's utility nodes, the design of MEL and maya . cmds is profoundly
non-composable. Let's start by creating a couple of nodes, and viewing them with the
1s function as follows:

>>> import maya.cmds as cmds
>>> jl = cmds.joint ()

>>> j2 = cmds.joint ()

>>> cmds.ls (type="'transform')
[...u'jointl', u'joint2'...]
>>> cmds.ls (exactType='joint"')
[u'jointl', u'joint2']

The type="'transform' argument returns the joints because joints are a type of
transform, as we learned in the last chapter. If our scene had other transforms, they
would be part of the results. In contrast, the exactType='joint' argument returns
only the joints in the scene, and not other transforms.

We would expect that most listing functions in Maya would support the type and
exactType flags, as 1s does. And if not, at least we'd expect these flags to work
consistently. I have bad news. Behold the 1istConnections function:

>>> cmds.listConnections(jl, type='transform')
[u'joint2']

>>> cmds.listConnections(jl, exactType='transform')
Traceback (most recent call last):

TypeError: Invalid arguments for flag 'exactType'...

[42]

Chapter 2

Using a string for the exactType argument in 1istConnections results in
a TypeError. The argument must be a Boolean value, as shown in the
following example:

>>> cmds.listConnections(jl, type='joint', exactType=True)
[u'joint2']

We see this unintuitive pattern repeated in multiple places. In this next example, we
can see that the 1istRelatives function doesn't even support the exactType flag!

>>> cmds.listRelatives(j1l, type='joint')
[u'joint2']

>>> cmds.listRelatives(jl, exactType='transform')
Traceback (most recent call last):

TypeError: Invalid flag 'exactType'

What do these strange design choices have to do with composability?

Composable functions generally do a single thing. The problematic functions called
out previously are combining two behaviors into one function. There is the selection
behavior (list relatives, connections, or all objects in the scene) and the filtering
behavior (of the selection, choose only objects of a certain type). We can imagine
that as this filtering behavior grows more complex, it becomes impossible to keep all
selection functions providing filtering in sync.

M It should be clear but it bears pointing out: the term selection
Q here does not refer to selecting an object in Maya. It refers to
the computer science term of choosing something.

What would it look like if we broke the filtering out into a distinct function? The
following code uses functions that we will build later in this chapter.

>>> import minspect
>>> [o for o in pmc.listConnections (j1)

if minspect.is exact type(o, 'Jjoint')]
[nt.Joint (u'joint2")]

The 1istConnections function still handles the selection, but now the is_exact
type function handles the filtering. We combine the two using a list comprehension,
which we'll learn about in the List Comprehensions section later in this chapter. As
more filtering functionality needs to be provided, nothing except is_exact_type
needs to change. Likewise, as 1istConnections needs to change, it would never
conflict with the type filtering behavior.

[43]

Writing Composable Code

Avoiding the use of Boolean flags

As a rule of thumb, avoid multiple Boolean flags as function parameters. Multiple
Boolean flags indicate problematic code, or what is often called a code smell. While a
single flag is usually acceptable, multiple flags become exponentially more difficult
to maintain. Once you get past two flags, you should almost always split your
function into two or more smaller functions, or rethink how it works.

. A code smell is something in the design or implementation of a
% program that indicates deeper problems. Generally, multiple
s Boolean flags in a function's signature is a code smell that
indicates an overly complex function body.

Additionally, you should never have arguments that are mutually exclusive or
interfere with each other, flags or not. The use_stdout argument in the following
example has no effect when the stream argument is not None.

>>> import os
>>> import sys
>>> def say(s, use_stdout=True, stream=None) :
if stream is None:
if use_ stdout:
stream = sys.stdout
else:
stream = sys.stderr
stream.write(s + os.linesep)

The preceding say function may seem contrived but it is not. You could have a
function similar to this lurking in your codebase! I would expect that the evolution
of the say function went like this:

>>> # Someone needs a simple debug printer to stdout

>>> say('hi'")

>>> # Someone needed to print to stderr, so adds a flag.
>>> say('hi', use stdout=True)

>>> # Someone needed an arbitrary stream, so adds support.
>>> say('hi', use stdout=True, stream=None)

You should err on the side of not using Boolean flags. It is better to be verbose and
pass in what's needed than it is to perform calculations in controlled by flags. You
can always wrap a general and verbose function with a function that has a signature
better suited to the context in which it is used.

[44]

Chapter 2

As we've already seen, the teams at Autodesk (and Alias | Wavefront before them)
could not keep all of their flags in sync. This isn't because they aren't smart enough
or don't work hard enough. It is simply the way software evolves. For comparison,
the Unix 1s command supports almost 60 options!

Flags lead to users having a hard time remembering how something works. It makes
a single function difficult to maintain and extend. It also adds an insurmountable
burden to systems, such as Maya's listing functions, that should have consistency.

Due to MEL's limitations as a language, flags were probably a good decision at the
time. But we are using the much more powerful language of Python and should take
advantage of it by writing composable code and avoiding the use of Boolean flags.

Evolving legacy code into composable code

Have you ever seen code like the following?

>>> def get all root joints():

roots = []
for jnt in pmc.ls(type='joint'):
if jnt.getParent () is None:

roots.append (jnt)
.. return roots
>>> get _all root joints()
[nt.Joint (u'jointl")]

The get_all_root_joints function returns a list of all joints in the scene that have
no parent. There are a number of issues with the preceding function, but in general
we can say it lacks composability.

Perhaps this function is already somewhere in your codebase. Now you have a new
use case for this root-finding behavior: a user merges a Maya scene into one with
existing skeletons, and you want to get only the skeleton roots from the new scene.
Unfortunately, you cannot use the same logic inside get_all_root_joints unless
you copy and paste it (which you shouldn't do, and won't have to do after reading
this chapter). The get_all_root_joints function has a limited design that makes
re-using it for new purposes impossible.

In what ways is it limited? Just like the 1istRelatives and previously discussed
examples, we've combined selection and filtering in the same function. For example,
the 1s command has both selection (select all objects) and filtering (keep only joints),
and the next line also filters (keep only objects without a parent). We also have
several lines of boilerplate for creating the list, appending to the list, and returning it.

Wouldn't it be great if we could write our code in such a way so that it's more
easily re-usable?

[45]

Writing Composable Code

Rewriting code for composability

Rewriting existing code for composability usually involves splitting up a larger
function into smaller pieces, each responsible for a single task. In the case of
get_all root_joints, we will just create a function to filter root joints.

>>> def is_root joint (obj) :

return obj.type() == 'joint' and obj.getParent () is None
>>> all roots = [o for o in pmc.ls() if is_root_ joint (o)]
>>> new_roots = [o for o in pmc.importFile(some_file path)

if is_root_joint (o)]

We've pulled all of our filtering logic into a simple predicate, the is_root_joint
function. A predicate is a fancy name for a function that returns True or False.
We combine that predicate with a selection (1s or importFile) and suddenly the
root-finding logic is usable everywhere.

Let's take this splitting of selection and filtering further.

Getting the first item in a sequence

It's very common to find code to select the first item in a sequence, unless the
sequence is empty, in which case we select None. To do this, we create the sequence,
assign our result variable a default value of None, check if the sequence contains
items, and if so, assign the result variable to be the first item in the sequence.

The following code illustrates this process:

>>> all roots = [o for o in pmc.ls() if is_root_ joint (o)]
>>> first_root = None
>>> 1f all_roots:
first_root = all_roots[0]
>>> first root
nt.Joint (u'jointl')

There are several problems with this implementation. First, accessing all_roots [0]
only works if all_roots is indexable with an integer. Examples of compatible types
are lists and tuples. However, there are many sequences in Python that are not
indexable. We won't go over them now (they include sets and generators), so you'll
just have to take my word for it. This pattern will not work for those types, so the
common workaround is to cast the object into a list before indexing. Yuck!

[46]

Chapter 2

The second problem (and more important for our current purposes) is that the
preceding code involves a lot of boilerplate. Boilerplate is code that must be
included with little modification. We use four lines for a single expression: return
a value that is the first item in a sequence or a default if the sequence is empty. Instead of
being happy with boilerplate, we should write a function to remove it, as we do in
the following code:

>>> def first or default (sequence, default=None) :
for item in sequence:
return item # Return the first item
return default # Return default if no items

Now our code to select the first root joint looks like this:

>>> first root = first or default (

.. o for o in pmc.ls() if is root joint (o))
>>> first root

nt.Joint (u'jointl")

Can we do one better? What if we combine the is_root_joint predicate with
our first_or_ default logic? Let's add a predicate parameter to the first_or_
default function.

>>> def first or default (sequence, predicate=None, default=None) :
for item in sequence:
if predicate is None or predicate(item):
return item
return default

Now our code looks as follows:

>>> first root = first or default (pmc.ls(), is_root joint)
>>> first root
nt.Joint (u'jointl")

Pretty neat! We've taken what normally shows up as several lines of boilerplate
imperative code, and broken it down into two totally reusable functions.

One of the benefits of developing this way is that our code is not tied to Maya. There
is nothing specific to Maya in the first_or_ default function. This means that your
code is totally reusable, testable, and much more easy to develop. In fact, I always
develop functions like this completely outside Maya.

>>> first or default([1, 2, 3])

1

>>> first or default([], default='hil!')
'hil!

We're well on our way to writing composable code!

[47]

Writing Composable Code

Writing head and tail functions

Another example of argument-driven behavior that is better served as distinct
functions is the head and tail parameters in the 1s function. The head argument
specifies how many items to return from the start of the list, and the tail argument
specifies the opposite. We can see the two in action in the following example:

>>> pmc.ls (type='joint', head=2)

[nt.Joint (u'jointl'), nt.Joint (u'joint2')]
>>> pmc.ls (type='joint', tail=2)
[nt.Joint (u'joint2'), nt.Joint (u'joint3')]

Instead of using arguments to control this behavior, it can be rewritten as head and
tail functions, as shown in the following example;

>>> def head(sequence, count) :

result = []
for item in sequence:
if len(result) == count:

break
result.append (item)
.. return result
>>> head(pmc.ls (type="'joint'), 2)
[nt.Joint (u'jointl'), nt.Joint (u'joint2')]

>>> def tail (sequence, count) :
result = list (sequence)
.. return result [-count:]
>>> tail (pmc.ls (type="'joint'), 2)
[nt.Joint (u'joint2'), nt.Joint (u'joint3')]

The new head and tail functions can be re-used for any collection, do not depend
on Maya, and do not have the special behavior of the 1s arguments.

Learning to use list comprehensions

Let's look at list comprehensions in depth now that we've used simpler versions
several times. It's a powerful-yet-simple syntax that has been in Python since version
2.0. List comprehensions are described very succinctly and with very clear examples
in PEP 202 at http://www.python.org/dev/peps/pep-0202/

[48]

http://www.python.org/dev/peps/pep-0202/

Chapter 2

A Python Enhancement Proposal (PEP) is a design document for a
Python feature (or similar). Often it can be very long and technical. PEP
3 202 is a very straightforward PEP that is well worth reading, consisting of
Q three paragraphs and one example block. Some other notable PEPs will be
mentioned in this book and in the appendices.

Oh, and PEP 1 describes PEPs and the PEP process, of course.

A list comprehension has the following form:

[<map> for <variable> in <selection> | if <predicates>]

The map is the item that ends up in the list. It can be the same as variable if no
transformation is to take place. It's commonly a function that transforms variable.
The variable is the item in selection being iterated over. The selection is the
sequence being iterated. The predicate is optional expression, but is a function
that takes variable and returns True if the item should be included in the result
or False if not. For example, the following list comprehension generates a list of
uppercase letters from an input string:

>>> 8 = 'hil!
>>> [c.upper() for ¢ in s if c.isalpha()]
[IHII 'I']

In the preceding example:

* sisthe selection.
* cisthevariable.
* c.alpha() is the predicate.
* c.upper () is the map.
Let's look at some more simple examples.

>>> [1 + 1 for i in [1, 2, 3]]

[2, 3, 4]

>>> [1 for 1 in [1, 2, 3] if 1 > 2]

[3]

>>> [(i, chr(i)) for i in [65, 66, 67]]
[(65, 'A'), (66, 'B'), (67, 'C')]

You can also nest list comprehensions, but we'll avoid that for this book. PEP
202 includes many examples of nested list comprehensions, and they can be
very useful. However, only attempt them once you are comfortable with regular
list comprehensions.

[49]

Writing Composable Code

List comprehensions are vital when writing composable code, and we'll use them
repeatedly throughout the rest of the book. If you're still uncomfortable, fire up a
Python interpreter and get comfortable!

Implementing is_exact_type

With our experience building composable code and using list comprehensions, let's
take a stab at creating an is_exact_type function that will replace the need for the
exactType parameter in Maya's listing functions.

First, we need to choose a place to put the function. The minspect . py file we
created in Chapter 1, Introspecting Maya, Python, and PyMEL, is a reasonable location
for it. Let's put the new is_exact_type function there.

def is exact type(node, typename) :
"""node.type() == typename"""
return node.type() == typename

The is_exact_type function is very simple, checking whether two type strings
are equal.

We can add more predicates just as easily. The following is_type function returns
True if the type of node has a MEL type of typename or a subclass.

def is type(node, typename) :
"mrReturn True if node.type() is typename or
any subclass of typename."""
return typename in node.nodeType (inherited=True)

Let's look at some examples that use our new predicates. Notice how is_exact_type
matches only the camera node, but is_type finds the joint, sphere transform, and
camera nodes.

>>> objs = pmc.joint (), pmc.polySphere (), pmc.camera ()

>>> [o for o in pmc.ls() if minspect.is exact type(o, 'camera')]
[...nt.Camera(u'cameraShapel')]

>>> [o for o in pmc.ls() if minspect.is type(o, 'transform')]
[...nt.Joint (u'jointl'), nt.Transform(u'pSpherel!'),

nt.Transform(u'cameral')]

When a list comprehension uses a simple predicate, we may not even want to create
a function for it. We can define our predicate expression right in the comprehension.
The following code selects all joints with a positive x translation:

>>> jl1, j2 = pmc.joint (), pmc.joint ()

>>> j2.translateX.set (10)

>>> [j for j in pmc.ls(type='joint') if j.translateX.get() > 0]
[nt.Joint (u'joint2")]

[50]

Chapter 2

Though this code may be less familiar for a MEL guru, it is much more easily
understandable for anyone used to Python. And more importantly, it is far easier
to maintain, and especially compose.

Saying goodbye to map and filter

Instead of list comprehensions, it used to be popular to use the built-in map
and filter functions. For example, the two preceding examples could be written
as follows:

>>> map (lambda i: i + 1, [1, 2, 3])

(2, 3, 4]
>>> filter(lambda i: 1 > 2, [1, 2, 3])
[3]

In some cases, the map and filter form can actually be more concise than the list
comprehension form, as demonstrated by finding all root joints.

>>> filter(is_root joint, pmc.ls())

[nt.Joint (u'jointl")]

>>> [o for o in pmc.ls() 1if is root joint (o)]
[nt.Joint (u'jointl")]

In full disclosure, I sometimes use map and filter when it's more concise. But as a
rule, use list comprehensions. We'll use list comprehensions exclusively instead of
map and filter in this book, to reduce confusion and enforce style.

If you're interested in why this book and the Python community at large encourages
list comprehensions of map and filter, a simple Internet search should turn up lots
of good reading. List comprehensions are now Pythonic and map and filter are not.

Al

~ Refer to Chapter 1, Introspecting Maya, Python, and PyMEL,
for a discussion of what Pythonic means.

Writing a skeleton converter library

Let's put composability to work for us. We'll implement a true rite of passage for
programming in Maya —a routine to automatically convert a hierarchy of nodes
into a hierarchy of joints (a skeleton). This task allows us to focus on building small,
composable pieces of code, and string them together so that the character creator
tool we build later in the chapter can be very simple. These composable pieces won't
just serve our character creator. They'll serve us all throughout the book and our
coding lives.

[51]

Writing Composable Code

Writing the docstring and pseudocode

Before we start coding, we need a place to put the code. Create the skeletonutils.
py file inside the development root you chose in Chapter 1, Introspecting Maya, Python,
and PyMEL. This book's examples use C: \mayapybook\pylib.

After creating skeletonutils.py, open it in your IDE. Add the following code.
The code defines a function, a docstring that explains precisely what it will do, and
pseudocode describing the implementation. Docstrings are explained in more detail
in the next section:

def convert to skeleton(rootnode, prefix='skel ', parent=None) :
"n"inConverts a hierarchy of nodes into joints that have the
same transform, with their name prefixed with 'prefix'.
Return the newly created root node.
The new hierarchy will share the same parent as rootnode.

:param rootnode: The root PyNode.

Everything under it will be converted.
:param prefix: String to prefix newly created nodes with.
o
Create a joint from the given node with the new name.
Copy the transform and rotation.
Set the parent to rootnode's parent if parent is None,
Otherwise set it to _parent.
Convert all the children recursively, using the newly

H o H HF H

created joint as the parent.

We explicitly state that rootnode should be a pyNode object. It helps to be clear what
you're expecting, and just take in what you need rather than try to convert it inside
the function. That is, do not take in a string and convert it into a PyNode. The less the
function does, the easier it is to understand and maintain. It will also run faster.

The pseudocode says the function works recursively. If you don't know what
recursion is, don't worry. We'll explain it when we get to that part of the code.

And finally, the leading underscore of the _parent parameter indicates it is a
protected parameter. Callers outside the module should not pass it in. Recall that
we used a leading underscore in the name of minspect._py_ to_helpstr in Chapter
1, Introspecting Maya, Python, and PyMEL, to indicate the function is protected.

[52]

Chapter 2

Understanding docstrings and
reStructured Text

In the preceding code, we used a docstring to explain what our function does.
We've used docstrings already, for example in the minspect . pmhelp function in
Chapter 1, Introspecting Maya, Python, and PyMEL. The more advanced usage in the
preceding code, however, warrants

more explanation.

Docstrings are any literal string directly following a definition (module, function,
class, or method). By convention, triple-double-quotes are used (" " "), which allows
easy multiline strings. PEP 257 (http://www.python.org/dev/peps/pep-0257/)
defines Docstring Conventions and is well worth a read.

The :param rootnode: lines in the previous docstring are reStructured Text
markup (abbreviated rst or reST). This allows special formatting of your docstrings
in a way that is also readable as plain text. reStructured Text is standard for Python
so I'd suggest getting into the habit of using it. Many IDEs support special rendering
for it and the popular Sphinx project (http://sphinx-doc.org/) can turn your
Python docstrings into HTML and other forms of documentation.

In addition to param, there are other directives, such as type, which can give hints

to your IDE about what members exist on a parameter, providing a richer experience.
You can see more information about how Sphinx renders reStructured Text at
http://sphinx-doc.org/markup/desc.html. In particular, I suggest getting
comfortable with the param, type, rtype, return, and raises directives. You
should also be familiar with the text styling markup, such as *italics*, **bold**,
and ' 'code' .

Start simple, and even if you don't go any further in reStructured Text, you should
get used to documenting your code with docstrings.

Writing the first implementation

Now that we've written what our code is supposed to do, let's go ahead and write a
rough implementation:

import pymel.core as pmc

def convert to skeleton(rootnode, prefix='skel ', parent=None) :
""r"Converts a hierarchy of nodes into joints that have the
same transform, with their name prefixed with 'prefix'.
Return the newly created root node.
The new hierarchy will share the same parent as rootnode.

[53]

http://www.python.org/dev/peps/pep-0257/
http://sphinx-doc.org/
http://sphinx-doc.org/markup/desc.html

Writing Composable Code

:param rootnode: The root PyNode.

Everything under it will be converted.
:param prefix: String to prefix newly created nodes with.
wn

Create a joint from the given node with the new name.

= pmc.joint (name=prefix + rootnode.name())

Copy the transform and rotation.

#
J
#
j.translate.set (rootnode.translate.get ())
j.rotate.set (rootnode.rotate.get ())
Set the parent to rootnode's parent if parent is None,
Otherwise set it to _parent.
if parent is None:

_parent = rootnode.getParent ()
j .setParent (_parent)
Convert all the children recursively, using the newly
created joint as the parent.
for ¢ in rootnode.children() :

convert to skeleton(c, prefix, j)
return j

All our code does is what the pseudocode says. The recursion that we mentioned
previously happens where we call convert_to_skeleton inside convert_to_
skeleton. If a function calls itself, the function is said to be recursive. Recursion
is a powerful technique that should not be overused, but it is indispensable when
walking a tree or a hierarchy.

Breaking the first implementation

It's not difficult to see all the places this code can break, where it is ambiguous, and
the axes of likely change:

What happens if rootnode is not a valid PyNode? This is acceptable. The
only way this can happen is if code calls it with a non-PyNode, and we
clearly state in the docstring that rootnode must be a PyNode, so we should
not guard against this error. We look at these sorts of decisions more in
Chapter 3, Dealing with Errors.

What happens if rootnode is inside of a Maya namespace? Will the new
hierarchy be part of that namespace?

If the value of rootnode.getParent () is the same as j .getParent (), some
versions of Maya will raise an error.

What should happen to the inputs and outputs of the node being converted,
such as any shape or materials? Should they be duplicated or connected to
the new joint?

[54]

Chapter 2

* Right now we preserve the name/parent/translation/rotation of the source
transform, but what if we want to preserve additional information, such as
scale or custom attributes? How would we customize the joint with different
parameters, such as color or size?

Nearly any code you write is liable to have many unanswered questions about

its behavior and will need to change at some point. This is especially true of very
high-level code, and anything having to deal with Maya nodes is high-level. The
complexity is introduced by the scope of the node's interface. The interface of a Maya
node is so complex, and the surface area of what it can affect is so great, that it is
impossible to fully enumerate an operation's contract.

Understanding interface contracts

We use the term contract in the sense popularized by Bertrand Meyer's Design by
Contract. The idea, in a simplified form, says that every function has:

* A set of preconditions: Preconditions are the things that must be true for the
function to do its work. For example, the convert_to_skeleton function
requires an existing PYMEL Transform instance.

* A set of postconditions: Postconditions are the things that are guaranteed to
be true after the function returns. For example, the convert_to_skeleton
function returns a new PyMEL Joint instance.

Keeping this simple idea of contracts in mind can greatly help your design. However,
when we are programming with Maya, we have to accept many limitations.

An operation such as setting an item in a dictionary (my_dict [key] = value)has

a very clear contract. The precondition would be that key is hashable (implements a
valid __hash__method). The postcondition would be that the value exists for the key,
somy_dict [key] == value would return True immediately after the value is set.

But, let's say we have a Maya locator node. What should happen when we copy it?
Should any children also be copied? Should the new node be under the existing node's
parent? Should it be under the existing node's namespace or the active one? In these
cases we need very precise semantics, which Maya makes available under the Edit |
Duplicate Special tool. Similar options usually exist in Maya's script commands.

We will have to be forever vigilant against where Maya sets us up for failure

by not allowing strong contracts. As we go through turning our initial naive
implementation into something more robust, we'll build composable pieces with
very precise semantics. If each piece of code does just what it says, and does only
what it can comfortably guarantee, our codebase will be simpler overall.

[55]

Writing Composable Code

Extracting the safe_setparent utility function

Given what we know about contracts and where the existing code can break, the
first thing we can do is pull out some small functionality into utility functions.
Utility functions are general purpose helpers that people tend to consolidate into
a Python library.

"Q tend to grow with functions that end up being used only in one

Utility functions are necessary, but too many can be dangerous.

Unless they are of obvious and immediate general use, utility
Wl functions should be put next to where they are used. Utility libraries
place, and effectively managing a utility library requires thorough
documentation and high reliability, usually achieved through
automated testing. So, try to defer the creation of utility functions
and libraries until you have more than one actual use for it.

The easiest thing to fix is the potential j . setParent (_parent) error we
documented previously. We only want to set the parent if the new value is different
from the existing value. Let's change our code into the following, adding the safe_
setparent function:

def

def

safe_setparent (node, parent):

""mwinode.setParent (parent) ' if 'parent' is

not the same as 'node''s existing parent.

wn

if node.getParent () != parent:
node.setParent (parent)

convert to skeleton(rootnode, prefix='skel ', parent=None) :
j = pmc.joint (name=prefix + rootnode.name())
if _parent is None:
_parent = rootnode.getParent ()
safe_setparent (j, _parent)
j.translate.set (rootnode.translate.get ())
j.rotate.set (rootnode.rotate.get ())
for ¢ in rootnode.children() :
convert to skeleton(c, prefix, jJj)
return j

[56]

Chapter 2

We took the only set the parent if it will succeed approach (LBYL) rather than try to set
the parent and just pass if it fails (EAFP) approach here. Recall the discussion about
EAFP versus LBYL in Chapter 1, Introspecting Maya, Python, and PyMEL. LBYL was
chosen in this case because setParent raises a very unhelpful RuntimeError, which
can be raised for any number of reasons (for example, creating a circular parent/
child relationship). Rather than potentially swallowing an unexpected error, or doing
something ugly like parsing the error message, we use LBYL. And while LBYL is not
always considered Pythonic, this sort of pragmatism is.

So we've added the safe_setparent utility function, which handles the I wish it
worked this way in the first place behavior we are trying to hide. Using utility functions
in this way is smart.

If you find yourself having to patch default behaviors often, you
M should consider following the advice in Chapter 9, Becoming a Part
Q of the Python Community, and submit this as an improvement to the
PyMEL source. In fact, that's already been done, so Maya 2011 and
newer should not display this behavior.

While it's always best when problems can be fixed at the source, sometimes in order
to create composable code, you need to take matters into your own hands.

Learning how to refactor

What we just did with safe_setparent is called refactoring. Martin Fowler gives
the following definition of refactoring.

Refactoring is a disciplined technique for restructuring an existing body of code,
altering its internal structure without changing its external behavior. Its heart is a
series of small behavior preserving transformations.

We identified a bug (if the current parent is the value to setParent, an exception

is raised), identified a fix to the bug (check if the problematic condition exists), and
implemented that fix by changing the function's internal structure. Fixing bugs is not
an intrinsic part of refactoring, though it's often a motivation.

Making these small deliberate changes to our code facilitates building reliable
modules that we can grow and maintain. Refactoring includes removing duplication,
enhancing clarity, and making the code easier to work with. The importance of the
practice cannot be understated.

[57]

Writing Composable Code

To truly do safe refactoring, we'd need a full suite of automated tests to run, to
make sure the refactoring does not break existing functionality. We'll build these
tests where we can (such as in the minspect._py to_helpstr example in Chapter 1,
Introspecting Maya, Python, and PyMEL), but much of the book is void of them. Unit
tests can be found in the code accompanying this book, along with instructions on
how to run the tests. Refer to Appendix, Python Best Practices, for more information
about acquiring and running the tests for the code in this book.

Simplifying the node to joint conversion

The next area of our implementation that needs work is the copying of attributes
from the old object to the new joint. This is an area that will likely change as new
features are added. For example, if this library were part of an auto-rigger, the
dummy locators that define a pre-rigged character may have important custom
attributes that need to be transferred to the joints.

Let's perform the highlighted refactoring, creating the _convert_to_joint function
from code originally in the convert_to_skeleton function. The extracted code is
highlighted in the following listing.

def convert to joint(node, parent, prefix):
j = pmc.joint (name=prefix + node.name())
safe setparent(j, parent)
j.translate.set (node.translate.get())
j.rotate.set (node.rotate.get())

return j
def convert to skeleton(rootnode, prefix='skel ', parent=None) :
if parent is None:
_parent = rootnode.getParent ()
j = convert to joint(rootnode, parent, prefix)

for ¢ in rootnode.children() :
convert to skeleton(c, prefix, j)
return j

Now when additional attributes need to be copied, locked, or reconnected, we have
a good place to put them. For example, let's suppose we want to color our joints
depending on their position on the x axis. We have a clear home for the changes,
which are highlighted in the following listing.

GREEN = 14
BLUE = 6
YELLOW = 17

[58]

Chapter 2

def convert to joint (node, parent, prefix):
j = pmc.joint (name=prefix + node.name())
safe setparent (j, parent)
j.translate.set (node.translate.get())
j.rotate.set (node.rotate.get ())
X = j.translateX.get()
if x < 0.001:

col = GREEN

elif x > 0.001:

col BLUE

else:
YELLOW
j.overrideColor.set (col)

col

return j

You can, of course, put this choosing and setting of the wire color into a function.
It would help keep things organized. So let's refactor this implementation just a
small bit, creating a calc_wirecolor function nested inside of the convert to_
joint function.

def convert to joint (node, parent, prefix):
j = pmc.joint (name=prefix + node.name())
safe setparent (node, parent)
j.translate.set (node.translate.get())
j.rotate.set (node.rotate.get ())
def calc wirecolor():
X = j.translateX.get ()
if x < 0.001:
return GREEN
elif x > 0.001:
return BLUE
else:
return YELLOW
j.overrideColor.set (calc _wirecolor())
return j

Now when we add more code, we can just put it into tiny nested functions similar to
calc_wirecolor, instead of polluting the module globals with single-use functions.
This has the added and important benefit of keeping the code as close as possible to
where it's actually used. Of course, if you need a nested function in multiple scopes,
you should pull it into a more accessible place.

[59]

Writing Composable Code

Learning how to use closures

In the preceding example, we use the variable j inside the calc_wirecolor function,
even though it is not a parameter. This calc_wirecolor function is called a closure,
also called a nested function or inner function. We create a closure when a function
closes over an outside variable (or more loosely, whenever we define a function inside
a function or method). The formal definition of a closure sounds very technical, but
we only need to understand this: because j is in the scope of calc_wirecolor (sort
of like a global variable is accessible from within a function), it can be used inside the
function. Using closures is an incredibly powerful technique. We'll use and explore it
more throughout this book.

If you're stumped by closures, this is an area where thinking too hard is a drawback.
In the following code, which does not use a closure, the spamneggs function can
obviously refer to the spam function.

>>> def spam(adjective):
return adjective + ' spam'
>>> def spamneggs (adjective) :
return spam(adjective) + ' + eggs'
>>> spamneggs ('Boring')
'Boring spam + eggs'

We can also just move spam into spamneggs, as we've done with the
calc_wirecolor and convert to_ joint functions. Nested functions in
Python work great!

>>> def spamneggs (adjective) :
def spam(adjective):
return adjective + ' spam'
return spam(adjective) + ' + eggs'
>>> spamneggs ('Decent')
'Decent spam + eggs'

Finally, we can just get rid of the duplication of the adjective parameter in spam
and just have it use the adjective argument passed into spamneggs:

>>> def spamneggs (adjective) :

def spam() :
return adjective + ' spam'
return spam() + ' + eggs'

>>> spamneggs ('Wonderful')
'Wonderful spam + eggs'

[60]

Chapter 2

Closures are a truly important feature in Python, along with every other language

that supports them. You should become familiar with them over time. If you're not
comfortable yet, just plan on getting there. There are definitely some gotchas (don't
create closures inside of Python loops!) but closures can really simplify your programs.

Dealing with node connections

Dealing with node connections is a common source of bugs when manipulating
nodes. Often we write code that treats a node as a standalone entity, something we
can reason about in the abstract. Nodes are, however, part of a potentially complex
network of other nodes, of history, and of internal state.

It's very important that when we change the state of a node, especially if we are
copying or deleting it, we consider its connections. In this case, we are just creating a
new node and copying the value of certain attributes from the source, so we need not
worry about connections.

Dealing with namespaces

In contrast to handling connections, which are an essential complexity in Maya,
Maya namespaces are a hideous and constant nuisance; a true accidental complexity.

Accidental and essential complexities are terms in Fred Brooks' famous
M essay, No Silver Bullet. Accidental complexity is caused by our approach
Q to a problem (an example would be MEL), while essential complexity is
inherent in the problem being solved and is unavoidable (an example
would be managing a hierarchy of objects).

For our skeleton converter, in what namespace do we want the newly created joints
to be placed? Our three options are as follows:

* The root namespace. This doesn't seem very correct so we won't bother
considering it.

* The namespace of the source object.
* The current namespace.

[61]

Writing Composable Code

Though the second option is a valid design choice, we'll avoid it and choose the third
option for two reasons. First, the second option is more code. Putting something in

the current namespace happens automatically, so we don't need to write any extra
code. Second, any non-default behavior is a decision that our code needs to make and
manage; by not making a decision in our function, we let the caller make a decision, or
let the caller let its caller make a decision, and so on. This is much more in the spirit of
this chapter. Think about our discussion of contracts and composability earlier. Prefer
to write the simplest code possible.

Wrapping up the skeleton converter

It turns out that our skeleton converter is relatively simple, just a few dozen lines of
code. There's nothing complex here, nothing that would trick another programmer
(or yourself) several years in the future. And though we'll use our skeleton converter
for our character creator in the next section, nothing stops a programmer from using
it for their own purposes.

The following listing is the contents of skeletonutils.py so far.

GREEN = 14
BLUE = 6
YELLOW = 17

def convert to_ joint (node, parent, prefix):
j = pmc.joint (name=prefix + node.name())
safe setparent (node, parent)
j.translate.set (node.translate.get ())
j.rotate.set (node.rotate.get ())
def calc _wirecolor () :
X = j.translateX.get ()
if x < 0.001:
return GREEN
elif x > 0.001:
return BLUE
else:
return YELLOW
j.overrideColor.set (calc_wirecolor())

return j

def convert_to_skeleton(rootnode, prefix='skel ', _parent=None) :
"mnConverts a hierarchy of nodes into joints that have the
same transform, with their name prefixed with 'prefix'.

Return the newly created root node.

[62]

Chapter 2

:param rootnode: The root PyNode.
Everything under it will be converted.
:param prefix: String to prefix newly created nodes with.
wn
if parent is None:
_parent = rootnode.getParent ()
j = _convert to joint (rootnode, parent, prefix)
for ¢ in rootnode.children() :
convert to skeleton(c, prefix, j)
return j

The key takeaway from the skeleton creator code is this:

Write the absolute simplest code you can for as much of your code as you can. The fastest
code is the code which does not run. The code easiest to maintain is the code that was never
written. Defer decisions to callers unless they are an important part of a contract.

As we'll see in the next example and beyond, there will still be complexity and we
still need to write code. Decisions still need to be made. But we should make them in
the best place possible.

Writing a character creator

So far, we've written the code to convert a hierarchy of transforms into joints. Now
we must write something that we can hook up to a menu and a workflow. An overly
simplified solution is to convert the current selection by assigning the following
expression into a shelf button:

map (skeletonutils.convert to skeleton, pmc.selection())

But that's a pretty bad high-level function. What about error handling, user feedback,
and the high-level decisions that we put off while writing the converter?

What we really want is something like the following:
charcreator.convert hierarchies main()

This can be hooked up to a menu button, which provides a better experience for
the user and a place to make those decisions that we kept out of the
skeletonutils module.

[63]

Writing Composable Code

Stubbing out the character creator

Create a charcreator.py file next to the skeletonutils.py file in your
development root, and open it up in your favorite IDE. Go ahead and type the
following code, which will stub out the functions we will build in this section.

import pymel.core as pmc
import skeletonutils

def convert hierarchies main() :
"wnwiconvert hierarchies (pmc.selection())'.
Prints and provides user feedback so only call from UI.

nnn

def convert hierarchies (rootnodes) :
"""Calls 'convert_hierarchy' for each root node in 'rootnodes'
(so passing in ' [parent, child]' would convert the 'parent'
hierarchy assuming 'child' lives under it).

nnn

def convert_hierarchy (node) :
""iConverts the hierarchy under and included 'rootnode'
into joints in the same namespace as 'rootnode'.
Deletes 'rootnode' and its hierarchy.
Connections to nodes are not preserved on the newly
created joints.

nnn

In the preceding code we've done some basic imports and defined three higher-level
functions that we know we'll need. They are documented in terms of each other,
and each one is quite clear in what it does. This also gives us a good idea of the
utility functions we'll need to write. For example, we will need a way to select only
unique root nodes from the input to convert_hierarchies, and a way to walk
along a skeleton.

Let's begin by implementing convert_hierarchies_main, which works on the
current selection, then convert hierarchies, which converts a collection of
hierarchies, and then finally, convert_hierarchy, which converts a single hierarchy.

[64]

Chapter 2

Implementing convert_hierarchies_main

The entry point of any program has traditionally been called its main. For example, the
Python idiom of having if _ name == '_main__': at the bottom of a file asks,

"is this file the script being run from the command line". Other languages may have

a main method in a binary to indicate the program's entry point when executed. We
use the same convention here to specify that "this function provides some feedback
(such as printing), so use this from the user interface, such as the shelf or a menu, but
not from other libraries." This is just a convention I've established because I rigorously
keep user interface code out of libraries. User interface not only includes graphical
elements such as dialogs, but also calls to raw_input and print statements. You can
come up with your own convention, but keep UI code distinct from non-UI code.

Anyway, the implementation of convert_hierarchies_main has no surprises:

def convert_hierarchies_main() :
"nntconvert_hierarchies (pmc.selection())'.
Prints and provides user feedback so only call from UI.
nmnn
nodes = pmc.selected(type='transform') #(1)
if not nodes:

pmc.warning ('No transforms selected.') #(2)
return
new_roots = convert_hierarchies (nodes) #(3)
print 'Created:', ','.join([r.name() for r in new_roots]) #(4)

This code should be self-explanatory but here's a quick breakdown:

Get all transforms that are currently selected.
If no transforms are selected, warn and return.

Convert selected transforms.

Ll

Print out the newly created roots to inform the user what was converted.
Recall that the pattern of <delimiter>.join(<string list>) was
discussed in Chapter 1, Introspecting Maya, Python, and PyMEL.

So with that function out of the way, let's get further into the actual meat of
our program.

[65]

Writing Composable Code

Implementing convert_hierarchies

The convert_hierarchies function does two things: it pulls only the unique root
nodes from the inputs, and invokes convert hierarchy on each of them. We'll start
by implementing the functionality to find the unique roots.

Decomposing into composable functions

One way to pull only the unique roots from the inputs is to go through each input, and
if any of its ancestors are in a collection of unique roots, it is not a unique root and can
be skipped. Ancestors of a node include all the nodes between the node itself and the
tree's root. For node N in the following diagram, nodes P1 and P2 are its ancestors.

Getting a node's ancestors should sound tangential to creating a character and
generally useful. These are clear indicators that it should live as a utility function.
Open up skeletonutils.py and add the following function at the bottom:

def ancestors (node) :
"""Return a list of ancestors, starting with the direct parent
and ending with the top-level (root) parent."""
result = []
parent = node.getParent ()
while parent is not None:
result.append (parent)
parent = parent.getParent ()
return result

[66]

Chapter 2

We know we've hit the root of the tree when node . getParent () returns None.
We can see the ancestors function in action by walking through the following
small joint hierarchy:

>>> jl1 = pmc.joint (name='J1")

>>> j2 = pmc.joint (name='J2")

>>> j3 = pmc.joint (name='J3")

>>> import skeletonutils

>>> skeletonutils.ancestors(jl)

(]

>>> skeletonutils.ancestors (j3)
[nt.Joint (u'd2'), nt.Joint(u'dli')]

Remember that nothing about this function is tied to character creation or joint
conversion at all. This makes it much easier to understand and to test, and also
makes the character creator code simpler.

M We can clean the ancestors function up further by changing it to
Q use the yield keyword. We'll look at yield in Chapter 4, Leveraging
Context Managers and Decorators in Maya.

If we think about the code to find the unique roots, we'll find that there's nothing
specific to character creation here either. Let's add the following code to the bottom
of skeletonutils.py to find the unique roots of a collection of nodes:

def uniqueroots (nodes): #(1)
""r"Returns a list of the nodes in 'nodes' that are not
children of any node in 'nodes'."""
result = []
def handle node(n): #(2)
"mrnTf any of the ancestors of n are in realroots,
just return, otherwise, append n to realroots.
for ancestor in ancestors(n) :
if ancestor in nodes: #(4)
return
result.append(n) #(5)
for node in nodes: #(3)
handle node (node)
return result

[67]

Writing Composable Code

Let's walk through this code block by block:

1. There may be a better way to write this docstring, since this is a tricky
algorithm to express. You'll also notice that the docstring expresses the idea,
but the implementation is very different. We can very well implement the
function the way the docstring is written, but it would be significantly slower
and more complex. The docstring should express the what and not the how,
but sometimes the two overlap (check out help (dict.get)).

2. We create a closure inside the uniqueroots function to handle each node. The
closure "closes over" the result variable from the outer scope. We looked at
closures in more detail earlier in this chapter, and will continue to use them
throughout the book. Their importance cannot be overstated.

3. We call the closure with each node.

4. If the ancestor of any input node is another input node, the node we are
looking at can be ignored; it will already be handled by its ancestor.

5. From inside the closure, we append to the result list.

Like ancestors, the uniqueroots function should be understandable and testable in
the abstract.

>>> reload (skeletonutils)

>>> skeletonutils.uniqueroots([j1l, j21)
[nt.Joint (u'Jdl')]

>>> skeletonutils.uniqueroots ([j2])
[nt.Joint (u'd2"')]

Since we are done with all of our utility functions, we can go back to charcreator.
py and implement our convert_hierarchies function as follows. Notice how
simple it is.

def convert hierarchies (rootnodes) :
roots = skeletonutils.uniqueroots (rootnodes)
result = [convert_hierarchy(r) for r in roots]
return result

Implementing convert_hierarchy

Finally, we need to implement the hierarchy conversion. We already have most of
its functionality through the joint converter we've already written. The only thing it
has to do is delete the original hierarchy after conversion. Let's implement convert_
hierarchy inside of charcreator.py as follows:

def convert hierarchy (node) :
result = skeletonutils.convert to skeleton (node)
pmc.delete (node)
return result

[68]

Chapter 2

It's worth pointing out that the deletion of node (and implicitly, all of its
descendants) only happens if the hierarchy creation completes successfully.
We wouldn't want to partially convert a hierarchy and then delete the inputs,
leaving the user high and dry with a corrupt scene. We'll look more at best
practices for handling errors in Chapter 3, Dealing with Errors.

Supporting inevitable modifications

At this point, the basic character creator is done. You hook it up to a shelf or
menu as explained in Chapter 5, Building Graphical User Interfaces for Maya, and bask
in your glory.

Or not. The tool hasn't been released for a day and already you get a feature request.
Animators want the joints to be larger. But because the joint display size works well
for another game the code is used for, you can't just change it globally inside the
skeletonutils. convert to joint function.

When you've written enough code, you tend to expect certain changes, and learn to
always expect change in general. This does not mean you should build support for
unneeded features just in case. In fact, this is one of the absolute worst things you can
do. But you should keep an eye open to make sure your code will be able to change
in likely ways, even if you don't add explicit support immediately.

One such inevitable modification is passing arguments from higher level functions
(such as charcreator.convert_hierarchies) down to implementation functions
(such as skeletonutils._convert_to_joint). However, you cannot just do this
blindly. Providing an assumePreferredaAngles parameter (a keyword argument to
pmc. joint) to convert_hierarchies wouldn't make much sense and you'd end up
with a bloated codebase.

One thing we can look at providing here is some sort of configuration that callers can
choose from. The knowledge of this configuration can be limited to charcreator.py,
and it can unpack its values when it prepares to call skeletonutils. Pay attention to
the highlighted code in the revised functions inside skeletonutils.py.

def convert to joint (node, parent, prefix,
jnt size, lcol, rcol, ccol):
j = pmc.joint (name=prefix + node.name())
safe setparent (j, parent)
j.translate.set (node.translate.get())
j.rotate.set (node.rotate.get ())
j.setRadius (jnt_size)
def calc_wirecolor () :

[69]

Writing Composable Code

X = j.translateX.get ()
if x < -0.001:
return rcol
elif x > 0.001:
return lcol
else:
return ccol
j.overrideColor.set (calc_wirecolor())
return j

def convert to skeleton(
rootnode,
prefix="'skel ',
joint size=1.0,
lcol=BLUE,
rcol=GREEN,
ccol=YELLOW,
_parent=None) :
if parent is None:
_parent = rootnode.getParent ()
j = _convert to joint(
rootnode, parent, prefix, joint size, lcol, rcol, ccol)
for ¢ in rootnode.getChildren() :
convert to skeleton(
c, prefix, joint size, lcol, rcol, ccol, j)
return j

All we are doing is exposing more parameters (for joint size and color) to
customization. Instead of hardcoding things such as joint colors, or not even
allowing the joint size to be set, we take them in as arguments and provide
sensible defaults.

We can then take advantage of these newly exposed parameters in charcreator.py.

GREEN = 14
BLUE = 6
YELLOW = 17
PURPLE = 8
AQUA = 28

(1)

SETTINGS DEFAULT = {
'joint size': 1.0,
'right color': BLUE,
'left_color': GREEN,

[70]

Chapter 2

'center color': YELLOW,
'prefix': 'char ',

}

SETTINGS GAME2 = {
'joint size': 25.0,
'right color': PURPLE,
'left color': AQUA,
'center color': GREEN,
'prefix': 'game2char ',

#(2)
def convert hierarchies main(settings=SETTINGS DEFAULT) :
nodes = pmc.selected (type='transform')
if not nodes:
pmc.warning ('No transforms selected.')

return
new roots = convert hierarchies(nodes, settings)
print 'Created:', ','.join([r.name() for r in new roots])
#(2)
def convert hierarchies (rootnodes, settings=SETTINGS DEFAULT) :
roots = skeletonutils.uniqueroots (rootnodes)
result = [convert hierarchy(r, settings) for r in roots]

return result

(2)
def convert hierarchy(rootnode, settings=SETTINGS DEFAULT) :
result = skeletonutils.convert to_ skeleton(#(3)
rootnode,
joint size=settings['joint size'],
prefix=settings|['prefix'],
rcol=settings['right color'],
lcol=settings['left color'l],
ccol=settings['center color'])
pmc.delete (rootnode)
return result

[71]

Writing Composable Code

We've added a settings parameter to each function to allow the configuration of
joint color, prefix, and sizes to be customized. Let's walk over the changes to the
charcreator.py file's code:

1. Define two dictionaries that hold the configuration for different games, or
characters, or whatever you want to customize.

2. Add the settings parameter to each function so that it can be overridden
where needed.

Pass the settings into the convert_to_skeleton function. If you want to make
the keys of the settings dictionaries match the keyword argument names in
convert_to_skeleton, you can rewrite the line as skeletonutils.convert_to_
skeleton (node, **settings).It'sup to you.I've chosen a more verbose way of
doing things here. Check out the Appendix, Python Best Practices, for more details
about using the double asterik (**) syntax if you are unfamiliar with it.

By designing the high-level charcreator module around a configuration concept,
and making the lower-level skeletonutils functions explicit about what arguments
they take in, we've achieved several benefits. The two modules are not coupled or
tied together. We can expose more parameters in the skeletonutils.convert_to_
skeleton function without having to change the charcreator.convert_hierarchy
function. We can also change the way the charcreator functions work, and not have
to change the skeletonutils module. The high-level character creator code has lots
of assumptions built in, and the low-level skeleton library code has very few. This

is a powerful methodology to take, especially in Python, where you can iterate on
high-level code very rapidly.

u Another potential way to iterate on configuration quickly would be to
~ move the settings dictionary out of the code and into data files such
Q as json or yaml. Then you can modify these files by hand or even
build a simple editor.

Overall, we've developed a flexible and robust system that is far more powerful than
its number of lines of code would indicate!

Improving the performance of PyMEL

I hope at this point, PYMEL's superiority over maya . cmds has been thoroughly
demonstrated. If you have any doubt, feel free to rewrite the examples in this chapter
to use maya.cmds and see how much cleaner the PyMEL versions are.

Having said that, PyMEL can be slower than maya . cmds. The performance difference
can usually be made up by applying one of the following three improvements.

[72]

Chapter 2

Defining performance

For most scripts, the performance difference is too miniscule to matter. Fast and slow
are relative terms. The important metric is fast enough. If your code is fast enough,
performance improvements won't really matter. Most of the tools you will write

fall under this category. For example, making a pose mirroring tool go 500% faster
doesn't matter if it only takes a tenth of a second in the first place.

Refactoring for performance

In most cases where PyMEL code actually needs to be sped up, rewriting small parts
can make huge gains. Is your code doing unnecessary work inside a loop? Pull the
work out of the loop.

The remove_selected function in the following example returns a list with any
selected objects filtered out of the input list. The list comprehension evaluates pmc.
selected () for every item in the input list. This inefficiency is highlighted in the
following example.

>>> objs = pmc.joint (), pmc.joint ()
>>> def remove selected(objs) :
return [item for item in objs
if item not in pmc.selected()]
>>> pmc.select (objs[0])
>>> remove_ selected(objs)
[nt.Joint (u'joint2")]

Instead, we can evaluate pmc.selected () once, and use that value in the list
comprehension. This change is highlighted in the following example.

>>> def remove selected faster(objs):
selected = pmc.selected()
return [item for item in objs if item not in selected]
>>> pmc.select (objs[0])
>>> remove_ selected(objs)
[nt.Joint (u'joint2")]

Perhaps your code is slow because it is looking up data that can be safely cached.
In that case, we can cache the data when it is first calculated and re-use that.

[73]

Writing Composable Code

In the following get_type_hierarchy function, we want to find a MEL type's
MEL type hierarchy. To do so, we need to create an instance of the node, invoke the
nodeType method on it to get the hierarchy, delete the node, and return the hierarchy.

>>> def get type hierarchy (typename) :
node = pmc.createNode (typename)
result = node.nodeType (inherited=True)
pmc.delete (node)
.. return result
>>> get type hierarchy('joint"')
[u'containerBase', u'entity', u'dagNode', u'transform', u'joint']

Once we have the type hierarchy for a MEL type, we shouldn't need to calculate it
again. To make sure we don't perform this unnecessary work, we can cache the result
of the calculation, and return the cached value if it exists. This change is highlighted
in the following code.

>>> hierarchy cache = {}
>>> def get type hierarchy (typename) :
result = hierarchy cache.get (typename)

if result is None:
node = pmc.createNode (typename)
result = node.nodeType (inherited=True)
pmc.delete (node)
_hierarchy cachel[typename] = result
.. return result
>>> get type hierarchy('joint"')
[u'containerBase', u'entity', u'dagNode', u'transform', u'joint']

Or perhaps your code is slow because it is calling a method for each item in a
sequence, as the add_influences function is in the following example.

>>> jl1 = pmc.joint ()
>>> cluster = pmc.skinCluster(jl, pmc.polyCube () [0])
>>> def add influences(cl, infls):
for infl in infls:
. cl.addInfluence(infl)
>>> add_influences (cluster, [pmc.joint(), pmc.joint()])

Instead of iterating, check and see if the method can take in a list of arguments. We
are fortunate that the skinCluster.addInfluence method can, so let's remove the
for loop, as highlighted in the following code.

>>> def add influences(cl, infls):
. cl.addInfluence(infls)
>>> add_influences (cluster, [pmc.joint(), pmc.joint()])

Nearly all of these changes will end up not just making the code faster, but simpler too.

[74]

Chapter 2

Rewriting inner loops to use maya.cmds

Sometimes, you need to communicate with Maya inside a tight loop or heavily used
function. In these cases, PyMEL may actually be too slow if it has to go through
several layers of abstraction. You can rewrite the function body to use maya.cmds
while using PyMEL types for the relevant arguments and return value.

If this type of refactoring will help improve performance, you should look at using
the Maya API, which is usually even faster. Refer to Chapter 7, Taming the Maya API,
for an introduction to the Maya API.

You should also only take this approach when you've identified that the code

in question is a bottleneck, and speeding it up will yield significant overall
improvement. You can use the standard library's cProfile module for profiling
Python code. There are many resources on the Internet that explain the process in
greater detail.

We should pursue high quality and composable code. But if that code takes
unacceptably long to run, it matters less how clean it is. On the other hand, we
cannot disregard composability and quality for the sake of performance. Code using
maya .cmds will inevitably end up less composable and Pythonic than code using
PyMEL. This is because MEL's idioms are very far from Python's. We should contain
and limit code using maya.cmds when we cannot entirely eliminate it.

Summary

In this chapter, we learned how to write composable code. We saw examples of
non-composable MEL style code, such as Maya's listing functions. We learned
how to turn this legacy code into clean, composable functions, such as head,
tail, first_or_default, and is_exact_type. We created a reusable library
for converting a hierarchy of transforms into joints. We used that library for a
configurable character creator module that can easily be called through a UL
Along the way, we learned about list comprehensions, contracts, selecting and
filtering, closures, refactoring, docstrings, and improving PyMEL performance.

Writing composable code, and the topics in this chapter, are the foundation for a
successful and enjoyable experience programming Python in general, and Python in
Maya particularly. This is the way of the Pythonista.

Unfortunately, despite the composability of our functions, the care and craft of our
projects, the documentation we provide, and no matter how Pythonic our code is, there
will be problems. Mistakes will be made. Edge cases exploited. Bugs found. Dealing
with these errors is the topic of the next chapter.

[75]

Dealing with Errors

Errors happen. Having code that can handle errors properly is essential. In this
chapter, we will learn how to write code that gracefully handles errors in Maya
Python. We'll start by understanding some technical basics about Python exceptions,
such as the try/except statement and tracebacks. After that we will cover some
golden rules for handling exceptions. We will map those guidelines to the way Maya
works, and learn how to handle errors in Maya gracefully. We will use all of this
knowledge to build a high-level error handler. The error handler will be an exception
hook that will capture any relevant unhandled Python exception raised in Maya, and
send an e-mail to us. Finally, we'll look at various ways to improve the error handler
to make it useful in a production environment.

Understanding exceptions

The word exception is loaded. The definition seems clear: exceptions are exceptional.
I'll say, in Python at least, this definition is simply not true. A normal Python program
may handle and raise any number of exceptions as it hums along quite nicely.

Consider the Pythonic idiom we have already pointed out multiple times: Easier to
Ask Forgiveness than Permission. It is usually expressed as follows:

try:
spam.eggs ()

except AttributeError:
spam.ham ()

The preceding code is preferred over the following code, which uses a Look Before
You Leap style:

if hasattr(spam, 'eggs'):
spam.eggs ()

else:
spam.ham ()

Dealing with Errors

There is nothing exceptional about exceptions in the first example. Describing them
as exceptional is more accurate when describing how they behave rather than how
they are used.

I prefer the following definition:
" Exceptions are a form of (exceptional) flow control."

To illustrate that definition, consider the following lines of code:

if spam:
for i in xrange (count) :

eggs (1)

We can observe in the preceding code that there are two instances of explicit flow
control: the if statement and the for loop can change how the function executes.
There is a hidden flow control, however, and it can occur nearly anywhere. For
example, the xrange or eggs function can raise an exception for any number reasons.
An exception can also be raised almost anywhere if the operating system sends a signal
to Python to terminate the process. In either case, we experience an interruption that
isn't handled by the code we are reading. It is a hidden and implicit flow control. This
type of flow control is exceptional and it is handled through exceptions.

A corollary of exceptions being flow control is that exceptions are not always
conceptual errors. When I use the term error, such as in this chapter's introductory
paragraph, I mean it is as a problem the programmer did not expect or account for.
Exceptions are merely the mechanism by which errors are usually indicated.

We don't need to be scared of exceptions any more than we should be scared of
for loops. We just need to know when to raise an exception and how to handle an
exception. Such will be the focus of this chapter.

Introducing exception types

An exception is just like any other object in Python. You can create, inspect, and see
their class hierarchy as follows:

>>> ex = SystemError('a', 1)

>>> [t. name for t in type(ex). mro]

['SystemError', 'StandardError',6 'Exception', 'BaseException',
'object']

>>> ex.args

(ta', 1)

>>> dir (ex)

[" class_ ', ' delattr ', ...'args',6 'message']

[78]

Chapter 3

One important thing to note here is that you can think of all exceptions as
inheriting from the Exception base class. There is a history and rationale behind
BaseException and StandardError, but you should treat Exception as the base
class and ignore the latter two. If you would like more information, you can read
about Python's built-in exceptions at http://docs.python.org/2/library/
exceptions.html.

Explaining try/catch/finally flow control

Python's flow control for exceptions is nuanced. However, it is also an integral part
of the language, so it is vital to understand. This section will serve as a quick primer
or refresher. If you are already comfortable with exception handling, feel free to

skip to the next section. If you have never encountered Python exception handling
before, I suggest referring to a tutorial before proceeding. Two options are the official
Python tutorial on errors at https://docs.python.org/2/tutorial/errors.

html and the relevant chapter in the free Dive Into Python e-book at http://www.
diveintopython.net/file handling/index.html#fileinfo.exception.

The simplest form of exception handling is the basic try/except statement,
demonstrated by the following code:

>>> try:
1+ 'a’
. except:
print 'Errored!'

Errored!

The naked except keyword should not be used because it will catch every exception,
including things such as SystemExit which should not usually be caught. Instead,
we should explicitly declare what exception types we want to catch. The change to
the previous example is highlighted.

>>> try:
1+ 'a'
. except TypeError:
print 'Errored!'

Errored!

[79]

http://docs.python.org/2/library/exceptions.html
http://docs.python.org/2/library/exceptions.html
https://docs.python.org/2/tutorial/errors.html
https://docs.python.org/2/tutorial/errors.html
http://www.diveintopython.net/file_handling/index.html#fileinfo.exception
http://www.diveintopython.net/file_handling/index.html#fileinfo.exception

Dealing with Errors

Instead of a single type after the except keyword, we can use a tuple to catch
multiple types of exceptions with the same except clause. The change to the
previous example is highlighted.:

>>> try:
1+ 'a'
except (TypeError, RuntimeError) :
print 'Errored!'
Errored!

We can handle different types of exceptions with unique clauses by stacking except
statements. The first except expression that matches the exception type will be used.

>>> try:
1+ 'a'
except RuntimeError:
print 'RuntimeError!'
except TypeError:
print 'TypeError!'
TypeError!

We can also assign the caught exception to a variable. This allows us to use it from
within the except clause, as demonstrated in the following code.

>>> try:
1+ 'a'
except TypeError as ex:
print repr (ex)
TypeError ("unsupported operand type(s) for +: 'int' and 'str'",)

We can reraise the original exception using a naked raise statement. This allows us
to run custom error handling code without affecting the exception. The following
code prints when the error is caught, and then raises the original error, which is
caught by the interpreter and printed.

>>> try:
1+ 'a'
except TypeError:
print 'Errored!'’
raise
Errored!
Traceback (most recent call last):
TypeError: unsupported operand type(s) for +: 'int' and 'str'

[80]

Chapter 3

You can also create an exception instance and raise that, as in the following code:

>>> try:
1+ 'a'
except TypeError:
.. raise KeyError('hi!')
Traceback (most recent call last):
KeyError: 'hil'

Use the finally keyword to provide cleanup that happens after the try/except
code has been run. The code in the £inally clause is executed "on the way out"
when any other clause of the try/except statement is completed. Practically, this
means the finally code is run whether or not an exception is raised, and it is the last
clause to run.

>>> try:
1+ 'a’
except TypeError:
print 'Errored!'
finally:
print 'Cleaned up.'
Errored!

Cleaned up.

Python also provides an else clause that will be run if the try does not raise an
error. No example will be shown since we do not use try/except/else in this book.

If any of this is still unclear, refer to one of the tutorials listed at the beginning of this
section. It is very important to have some familiarity with these aspects of exception
flow control because the rest of this chapter relies on it heavily.

Explaining traceback objects

A Python traceback (called a stack trace in many languages) contains the
information about where an error occurred. You've probably seen a traceback similar
to the one we provoke here:

>>> 1 + 'a'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

[81]

Dealing with Errors

The traceback records the line that raised an exception, the top-level caller, and all
the calls in between the two. As we'll see later, the traceback usually also contains the
contents of each line. It did not in the preceding example because our code is created
from within the interactive prompt.

When a traceback is formatted into a string, the last line is the exception's
representation. This is usually the exception's type name and formatted arguments.

There are many more nuances to dealing with tracebacks that we will go over as we
need use them in more depth.

Explaining the exc_info tuple

The type of an exception, the exception instance, and the exception's traceback are
together known as the exc_info tuple or exception info. It is known by this name
because the information about the exception currently being handled is accessible
by calling the sys.exc_info () function. In the following example, notice how
we assign the exception info to the si variable, and can then access the exception
information from outside of the except clause.

>>> import sys

>>> try:
1+ 'a'
. except TypeError:
si = sys.exc_info()

>>> print si[0]

<type 'exceptions.TypeError's

>>> print repr(si[1l])

TypeError ("unsupported operand type(s) for +: 'int' and 'str'",)
>>> print si[2]

<traceback object at 0x0...>

We can see from this example that the exc_info tuple is an important part of
working with exceptions in Python. It contains all the necessary information for an
exception: the exception instance, type, and traceback.

You should be careful when capturing or using the sys.exc_info () tuple. Like
most things with exceptions, there are several gotchas, such as creating circular
references or garbage collection problems. We'll ignore them for this chapter since
they aren't common, but keep them in mind as you go further with Python. While
the exception and traceback concept may be straightforward, working with the
exc_info tuple, traceback objects, and the raise statement have some rough edges.

I don't find Python 2's exception design particularly elegant or intuitive, but the
good news is Python 3 has improved in this area. Despite these complaints, Python's
exception handling works well enough once you learn the essential syntax and the
lessons taught here.

[82]

Chapter 3

Living with unhandled exceptions

An exception can occur in two conceptual situations. The first is when the caller
expects it to happen, as we did when building minspect._is_pymel in Chapter 1,
Introspecting Maya, Python, and PyMEL. An AttributeError being raised indicated
to our algorithm that we should try a different attribute. Exceptions were being used
for flow control and had no ill effects.

The second situation, which is the focus of this and the following section, is when the
caller does not expect an exception. In this case, the exception bubbles up to a higher
layer. If the exception bubbles all the way up to the Python interpreter (the exception
is not caught by any except clause), it is called an unhandled exception. When an
unhandled exception occurs, the Python process exits or some default error handler
is invoked, often printing the exception information.

Failing in this catastrophic way when an unhandled exception occurs is called failing
fast, and it is generally a good idea. We should not allow an error to go undetected
and continue in an unknown state, so it is a good idea for the running code to be
interrupted and for the process to die or at least complain loudly. Once we know
something failed and identify the cause of the error, we can go in and fix the reason
behind the failure.

We also need to be comfortable with the fact that unhandled exceptions will happen,
and we shouldn't write more code than we need. For example, the exception types
following the except keyword should be as specific as possible. This will make our
code more clear and maintainable.

Handling exceptions at the application level

In nonstandard Python environments, such as Maya, the process does not exit in the
case of an unhandled Python exception. The exception is handled by the application,
usually printing information about the exception. In the case of Maya, this feedback
is displayed in the Script Editor. Importantly, the integrity of the Maya application is
preserved, along with the scene and data (hopefully).

Unfortunately, Maya does occasionally crash. Your scripts can cause Maya to get into
an invalid state or corrupt memory, perhaps due to some bug in Maya itself. There's
nothing Maya can do to recover, so it must crash.

[83]

Dealing with Errors

The "let something else handle catastrophic errors" pattern continues outside

of Python. The Autodesk Customer Error Reporting process watches Maya for
unexpected termination and asks you to send an error report to Autodesk when that
occurs. If the error reporting process crashes, the operating system may see it and ask
you to send an error report to your operating system manufacturer. And, of course,
operating systems occasionally crash!

ed and windows has been shut down to pr Nt damage

he problem seems to he caus y the following file:

PAGE_FAULT_IMN_HM AGED_AREA

time

In the next few sections we will lay down some good ideas for error handling.
We'll then build an application-level error handler, so we can do more with our
unhandled errors instead of having Maya just print them.

Golden rules of error handling

Programs will inevitably have errors. How we leverage our language and tools to
work with that fact is of the utmost importance.

Figuring out why an error in a program occurs is called debugging,
M e 1 :
~ and a specific discussion of debugging techniques is outside the
scope of this book. However, following the guidelines for error
handling here will reduce your (inevitable) time spent in debugging.

Keeping that in mind, we can establish some golden rules for dealing with errors and
exceptions in Python. Adhering to these rules will make sure those errors that do
occasionally occur can most effectively be learned from.

[84]

Chapter 3

Focus on the critical path

The term critical path is defined as the longest necessary path through a network of
activities. For tools and scripts in Maya, it would be something like the following:

"Given a scene and system configured correctly, the critical path are all the things
the user must do in order to accomplish the primary purpose of the tool."

For the character creator from Chapter 2, Writing Composable Code, the critical path
would be "the user selects the root of the hierarchy she wants converted, clicks a
button, and the hierarchy is replaced with a properly configured joint hierarchy."

Obviously, the critical path needs to work as expected. If the critical path is broken,
your tool is fundamentally broken. There is never a reason or excuse to release such
broken work (though I've done it and seen it done many times). More complex tools
may have several critical paths.

We also need to ensure that the critical path handles edge cases gracefully. If some
function is expecting one object to be selected, you must handle the case if zero or
many are selected, and explain to the user why the function did not execute. We
handled this in charcreator.convert_hierarchies_main by warning the user

if nothing is selected, and converting all the unique roots if multiple objects are
selected. It would not have been acceptable to raise an error if nothing is selected, or
only convert the first object and not explain why. In the case of a programming error,
there's nothing we can do, so we just let Maya handle the error and display some sort
of error information. The critical path should be hardened against user errors

or misconfiguration.

Keep the end user in mind

Almost anything is acceptable in a personal script that does not get distributed. I
would encourage you to apply the best practices from this chapter and book, but no
one will know if you don't.

If you are distributing a script to colleagues, the critical path should work but error
handling and reporting can still be rough. You can rely on people to tell you when
something breaks. You can fix the problem and get them a new version quickly.
Proximity means more information, and a captive audience means you can leave
some edge cases unaddressed until they come up and can be fixed.

[85]

Dealing with Errors

Distributing a tool to unknown third parties is, of course, the most difficult thing to
do. Sometimes people upload personal work of mediocre quality to script sharing
sites, and as a dissemination of information I find it admirable. Sometimes people
market personal work of mediocre quality as something more than it is, and I find
it not only dishonest but potentially dangerous as well. Poorly designed scripts

can cause scene or environment corruption or changes. It takes a lot of work to
make something polished enough for external distribution. In The Mythical Man-
Month, Fred Brooks observes that developing products for external customers often
takes three times as much effort as developing internal products. Many software
developers consider that a low estimate.

Al

~ Refer to Chapter 9, Becoming a Part of the Python Community, for
information about distributing scripts to external audiences.

Attention must always be paid to errors. You should know when a user is hitting an
error, and you should have a way to get a new build out easily. The latter topic is
outside the scope of this book, but we will address the former in this chapter.

Only catch errors you can handle

After such stern warnings about the effect of errors, you may try to be very cautious
and catch all errors. Do not do that. First of all, errors can happen anywhere (refer

to our earlier definition of exceptions as flow control). More importantly, handling
errors at too high a level obfuscates the actual problem so that fixing it becomes very
difficult. It is preferable to just let the error bubble up, catch it at the application level,
and preserve the full exception and stack trace. Consider how the following example
hides the actual bug:

>>> def rename first child():

try:
o = pmc.selected() [0]
realname = o.name () .split (' ") [1]
o.getChildren() [0] .rename (' ' + realname)

except Exception as ex:
print 'Could not rename first child:'
c. print ex
>>> rename_ first child()
Could not rename first child:
list index out of range

The problem here is that there are no less than three possible places an IndexError
can be raised: if zero objects are selected, if the selected object has zero children, or the
first child has a name with no underscores. The error printout does not help at all!

[86]

Chapter 3

What's the correct way to write this function? I don't have one; it is poorly designed.
It is highly specific and doesn't make much sense. There's no way to make this

clear or handle errors well. It would be better to get rid of the try/except entirely.
If reporting problems to the user is important, the function should be totally
rewritten to give proper feedback when a problematic condition is encountered.

Avoid partial mutations

Generally, if you catch an exception, there should be a way to roll the system back
to how it was. This is normally done by having well-designed systems that are
largely stateless (or at least avoid mutating arguments), and simply throwing away
whatever was happening that caused the exception.

Unfortunately, Maya is a huge ball of mutable state and this approach is rarely
practical. Let's look at the following code, which tries to translate three joints:

>>> def set pos(objs):
for o in objs:
.. o.translate.set ([100,50, 25])
>>> jl1, j2, j3 = pmc.joint (), pmc.joint (), pmc.joint ()
>>> j2.translate.lock()
>>> set pos([j1l, j2, j31])
Traceback (most recent call last):

RuntimeError: setAttr: The attribute 'joint2.translate' is locked or
connected and cannot be modified.

In this case, the position of j1 would be changed, but because j2.translate is
locked, setting the attribute value would raise an exception. The interruption would
leave j2 and j3 in their original positions. This is quite bad! Imagine if this were a
huge process that took 30 seconds and worked on hundreds of objects. A user would
have to reload the scene to make sure things were not corrupted. That also means

a user would have to save the scene before every use of the tool to ensure she has

a known good to fall back to. We'll look at strategies to cope with this unfortunate
situation in the Dealing with expensive and mutable state section later in this chapter.

The most common way to mitigate this issue is to use undo blocks, as we will see in
the coming Leveraging undo blocks section. There are other techniques, such as storing
and restoring state, or asking an object for permission before every mutation, but I
advise against them. Use undo blocks where needed, test your tools well, and just
accept that Maya is already filled with bugs. No one is going to die if your tool leaves
a mutation after an error.

[87]

Dealing with Errors

Practical error handling in Maya

Most of these golden rules are true in Python in general, as well as most other
programming languages with exceptions. However, using Python in Maya is a
different environment. There are some additional tools and constraints available.
In this section, we'll go through some of the unique problems we face in Maya, and
what can be done to mitigate each problem.

Dealing with expensive and mutable state

The biggest problem with error handling in Maya is that its overall design
significantly constrains the choices of any system built on top of it. Consider the
following script that lowercases the fileTextureName (ftn) attribute of all the file
nodes in the scene:

>>> for f in pmc.ls(type='file'):
f.ftn.set(f.ftn.get () .lower())
Traceback (most recent call last):
RuntimeError: setAttr: The attribute 'file2.fileTextureName' is locked
or connected and cannot be modified.
>>> [f.ftn.get () for f in pmc.ls(type='file')]
[u'ftno0', u'FIN1', u'FIN2']

Oops! The first file node has been renamed, but not the other two. This bug has been
described in the Avoid partial mutations earlier in this chapter. If an error happens
during the iteration, this script will leave some of the file nodes mutated (ftn is
lowercase), and some not. This would be a bad thing! How can we avoid it?

The first strategy to address this sort of problem is to avoid mutating. However,
because Maya's design works with highly mutable, complex nodes, this is not a
valid answer.

The second strategy is to do a read-copy-update of the data. This, too, is prohibited
by Maya's design. There is no way to separate the copy from the update, since when
a Maya node is duplicated, the scene is changed. And an update, which means
replacing the original node with the copied and mutated version, would be error
prone and expensive due to hierarchies, connections, and construction histories.

The read-copy-update pattern involves reading the value of some
_data, creating a copy of that data, changing that data, and updating the
% original value. It is commonly used as a synchronization mechanism
L= (for example, between threads). It can also be used to ensure some data
is not left partially mutated in the case of an error, by ensuring that the
original data is not changed unless the entire mutation succeeds.

[88]

Chapter 3

The third strategy is to manually roll back changes in the case of an error. This is
already a tricky solution outside of Maya, but even more verbose and challenging
within Maya.

>>> original data = []
>>> try:
for £ in pmc.ls(type='file'):
ftn = f.ftn.get ()
f.ftn.set (ftn.lower())
original data.append([f, £ftn])
. except Exception:
for £, ftn in original data:
f.ftn.set (ftn)
.. raise
Traceback (most recent call last):

RuntimeError: setAttr: The attribute 'file2.fileTextureName' is locked
or connected and cannot be modified.

>>> [f.ftn.get () for f in pmc.ls(type='file')]
[W'FTNO', u'FTN1', u'FTN2']

The preceding code turns a two line script into a confusing mess. We would need
to apply similar logic for every mutation. You can probably create helpers to hide
some of the complexity for most attribute changes, but the result would bear little
resemblance to normal Maya Python programming.

This "solution" creates as many problems as it solves. No one reading your code will
understand it, and your codebase will be filled with special (and error-prone) ways
that people must learn in order to be "safe" while doing trivial things.

The fourth option is, finally, somewhat realistic. We can use Maya's undo system so
that state is restored on an error. We will explore this strategy in the next section,
Leveraging undo blocks.

The final strategy to the issue of handling errors in the face of expensive and mutable
state is the one I often recommend. Shrug your shoulders and hope the caller can
handle the partial mutation. No one is using Maya to send a person to Mars or
perform surgery. Software for tasks that cannot afford errors is designed very
differently than Maya. Embrace the otherwise beautiful architecture of Maya and be
productive making awesome stuff and don't worry too much about this constraint.

. If you are interested in what sort of standards it takes to send
% someone into space, you can view NASA's Technical Standards
e Program here: https://standards.nasa.gov/documents/
nasa.

[89]

https://standards.nasa.gov/documents/nasa
https://standards.nasa.gov/documents/nasa

Dealing with Errors

Leveraging undo blocks

Maya's undo system gives us a reliable and straightforward way to preserve state
in the face of an error. We will continue with the previous example, lowercasing the
fileTextureName attribute of £ile nodes. The use of undo blocks is highlighted.

>>> pmc.undoInfo (openChunk=True)

>>> try:
for £ in pmc.ls(type='£file'):

f.ftn.set(f.ftn.get () .lower())
pmc.undoInfo (closeChunk=True)
. except Exception:

pmc.undoInfo (closeChunk=True)
pmc .undo ()

.. raise

Traceback (most recent call last):

RuntimeError: setAttr: The attribute 'file2.fileTextureName' is locked
or connected and cannot be modified.

>>> [f.ftn.get() for f in pmc.ls(type='file')]
[W'FTNO', u'FTN1', u'FTN2']

We start by opening a new undo chunk. We then perform our actions, closing the
chunk when done (due to success or failure). In the case of success, we're finished,
and the user can use a single undo to undo all the renaming. In the case of a failure,
we call the undo ourselves, and then re-raise the error, hopefully with the original
state restored by closing the undo block.

M In the next chapter, Chapter 4, Leveraging Context Managers and
Q Decorators in Maya, we will look at using a context manager to
write this in a less verbose way. For now, though, this will do.

The drawbacks with using undoInfo to handle errors are twofold.

First, undo operations are slow and you often want to turn them off entirely for
complex processes. If undo is disabled for Maya, or some code being called disables
undo, this approach will not work.

Second, the open-close chunk pattern can easily be broken, either by using it
incorrectly yourself (something we hope to avoid through the use of a context
manager in the next chapter), or in code that you don't control. Everyone has to
use it correctly or the user suffers.

[90]

Chapter 3

Dealing with Maya's poor exception design

Let's slightly redesign our script which lowercases attribute values. The attributes
that fail to be set will warn the user and undo, but an error for any other reason
leaves the scene corrupted so that it can be diagnosed properly. How would we go
about catching an error only if the attribute setting failed? We have to look through
the message of the raised exception, as highlighted in the following code:

>>> import sys
>>> pmc.undoInfo (openChunk=True)
>>> try:
for £ in pmc.ls(type='file'):
f.ftn.set(f.ftn.get () .lower())
pmc.undoInfo (closeChunk=True)
. except RuntimeError as ex:
pmc.undoInfo (closeChunk=True)
if ex.args[0] .startswith('setAttr: The attribute '):
pmc.undo ()
sys.stderr.write (
'Cannot set attribute, fix and try again.\\n')
sys.stderr.write(ex.args[0] + '\\n')
else:
raise
. except Exception:
pmc.undoInfo (closeChunk=True)
.. raise
Cannot set attribute, fix and try again.
setAttr: The attribute 'file2.fileTextureName' is locked or connected
and cannot be modified.
>>> [f.ftn.get() for f in pmc.ls(type='£file')]
[W'FTINO', u'FIN1', u'FTN2']

One of the most unfortunate designs in PYMEL is that nearly everything is a
RuntimeError with some particular message. The decision arises from the fact that
PyMEL wraps Maya's command engine, which does not have typed exceptions and
just uses a string. Rather than attempting to parse every error and build a massive
exception type hierarchy, PyYMEL merely wraps them as Runt imeError objects. We
must parse the error message ourselves.

Parsing the error message is unavoidable in some cases. Perhaps in this example,
moving the catch of the RuntimeError around the £ . ftn. set statement would

be a better design and avoid the need to parse the message. But in many cases
there is no alternative. For example, the maya.cmds. file command (which PyMEL
has thankfully broken up and wrapped into more digestible functions) has several
dozen flags. In order to know precisely what went wrong, the error message needs
to be parsed.

[91]

Dealing with Errors

Leveraging the Maya application

As discussed previously, we can leverage Maya as a top-level application which
provides a resilient place to handle Python errors. It is difficult (though possible) to
crash Maya through Python. We will not be attempting to handle any of these hard
crashes, whether due to Python or not, in this book.

We will use the Maya application for handling errors in the next section.

Dealing with the Maya application

The Maya application is something we can leverage, but it is also notoriously
unstable. Occasionally, doing something routine can crash Maya reliably. If you're
very unlucky, it will crash Maya randomly without easy reproduction steps.

There are also things that don't work as they normally do in Python (such as the
subprocess . Popen class), so code that works under a vanilla Python interpreter may
not work in Maya.

Instability during error handling is particularly frustrating!

Leveraging Python, which is better than MEL

Let's end on a good note. It is obvious but should be made explicit. We would
not be having this discussion if we were using MEL. The way to handle errors
in MEL —the catch keyword —is clunky and does not lend itself to creating any
complex programs.

Python gives us the good fortune to even be able to talk about tools and constraints.
The design of our programs and how we handle errors would be so limited without
a language similar to Python in Maya that we should be thankful we can even have
this discussion.

Building a high-level error handler

I stated in a previous section that it's desirable to know every time a script errors.
There are two ways to do this. The first is to embed some notification behavior in the
tool itself using something like the following code:

def my tool main() :
try:
do_stuff ()
except Exception:
send_error_mail ()
raise

[92]

Chapter 3

This is a fine strategy for larger programs. But what happens if you want to do this
for hundreds of scripts serving dozens of artists? Embedding the error handler in
each script would lead to rampant duplication and boilerplate.

Python has a solution, of course. It is sys . excepthook (also called the exception
hook), described by the Python docs as follows:

"When an exception is raised and uncaught, the interpreter calls sys.excepthook
with three arquments, the exception class, exception instance, and a traceback
object. In an interactive session this happens just before control is returned to

the prompt; in a Python program this happens just before the program exits. The
handling of such top-level exceptions can be customized by assigning another three-
argument function to sys.excepthook."

In keeping with the error handling frustrations specific to Maya, sys . excepthook
does not work in Maya. We need to use an alternative, and less elegant, mechanism.
First, though, let's understand how sys.excepthook works in standard Python.

Understanding sys.excepthook

Let's create a simple exception hook function that will print Hello! when an error
happens, as in the following code.

>>> 1 + '1!
Traceback (most recent call last):
TypeError: unsupported operand type(s) for +: 'int' and 'str'

>>> import sys

>>> def ehook (etype, evalue, tb):
print 'Hello!'

>>> sys.excepthook = ehook

>>> 1 + '1!

Hello!

The first time we called 1 + '1' we raised an error, which was caught by the Python
interpreter and the traceback was printed out. After setting sys.excepthook =
ehook, our ehook function handles the error instead. The sys . excepthook function
is called for every unhandled exception before it is handled by the interpreter.

There's no way to use an exception hook to recover and hand control back to your
Python script. That's what makes the exception unhandled. Though sys . excepthook
seems to handle the exception, it is the Python interpreter that actually catches the
exception and hands it off to the exception hook.

[93]

Dealing with Errors

The arguments to sys. excepthook are the three values in the sys.exc_info () tuple
we looked at earlier in the chapter.

The original Python sys.excepthook function is available via the sys.
excepthook__ attribute. This allows us to have some custom handling and still use
the default exception hook. We'll look into this in detail in a later section.

Using sys.excepthook in Maya

Unfortunately sys.excepthook does not work in Maya's GUI mode (it does work
in mayapy, however). Instead, you must use the maya.utils.formatGuiException
function. The formatGuiException function does not work in mayapy, however,

so in order to test the code we are going to write, we must use the Script Editor in
Maya. Follow these steps to open and use Maya's Script Editor:

1. Launch Maya.

Open the Script Editor.

In the bottom panel, type something similarto 1 + '1'.
Highlight the code and press Ctrl + Enter.

In the top panel, feedback will be displayed, such as anything we print or the
traceback for the error.

AR N

You can perform steps 4 and 5 repeatedly to interactively test your code. Remember
to reload the module you are testing via the reload function.

The sys.excepthook example that we created in the previous section can be
replicated to work in Maya as follows:

import maya.utils

def excepthook (tb_type, exc object, tb, detail=2): #(1)
return 'Hello!' #(2)

maya.utils.formatGuiException = excepthook #(3)

The breakdown of this function is as follows:

1. Notice that the formatGuiException function takes an optional detail
keyword argument. The regular sys . excepthook function does not.

2. The exception hook should return what is to be printed to Maya's Script
Editor. This is different from a normal sys . excepthook function, which
doesn't return anything. You can do your custom handling here, but you
also must return some string. Maya will display this string as
Error: Hello! #.

3. Assign your exception hook function to maya.utils. formatGuiException
so that it will be called by unhandled Python exceptions in Maya.

[94]

Chapter 3

Creating an error handler

For the rest of this chapter, we are going to build a way to catch unhandled
exceptions so that you, as a script or tool author, can know when and why errors
are happening. Create a file at C: \mayapybook\pylib\excepthandling.py to
house this work.

~ Remember, the development root you chose in Chapter 1, Introspecting
Maya, Python, and PyMEL, may be different from what is specified here.

Go ahead and open the file in your IDE and recreate the simple exception hook
function from the previous example.

import maya.utils

def excepthook(tb_type, exc object, tb, detail=2):
return 'Hello!'

maya.utils.formatGuiException = excepthook

This code creates a new exception hook function called excepthook that just prints
the string "Hello!", and then assigns the exception hook function to maya.utils.
formatGuiException.

In the Maya Script Editor, run the code 1 + '1'. You should get the following result
printed at the top panel of the Script Editor:

1+ '

Error: unsupported operand type(s) for +: 'int' and 'str'

Traceback (most recent call last):

File "<maya console>", line 1, in <modules>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Now, run import excepthandling to install the new exception hook. Run1 + '1°
again. You should get the following result in the Script Editor:

1+ '
Error: Hello!

We now have a most basic error handler. We will add more to it over the next
few sections.

[95]

Dealing with Errors

Improving the error handler

Printing Hello! isn't a very useful way to handle an exception. Let's build something
a bit more powerful. We should call the original exception hook to get a formatted
exception, and add some information. Let's edit excepthandling.py.

import maya.utils

def excepthook (etype, evalue, tb, detail=2):
s = maya.utils. formatGuiException (etype, evalue, tb, detail)
lines = [
S,
'An unhandled exception occurred.',
'Please copy the error info above this message’',
'and a copy of this file and email it to',
'mayasupport@robg3d.com. You should get a response',
'in three days or less.'
return '\n'.join(lines)

maya.utils.formatGuiException = excepthook

The first thing our new exception hook does is invoke the original exception hook
viamaya.utils. formatGuiException. This protected function is the conceptual
equivalent to the sys. excepthook__ function. If we were using sys. excepthook
in standard Python, we'd just print the information out inside our exception hook.
Instead, because we are using Maya, we return the string and let Maya print it out
for us. In the returned string, we include a helpful message for the user explaining
how to report this unhandled exception.

Execute1 + '1' in the Script Editor and you will see the following output:

1+ 'Y

Error: unsupported operand type(s) for +: 'int' and 'str'

Traceback (most recent call last):

File "<maya console>", line 1, in <modules>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

An unhandled exception occurred.

Please copy the error info above this message

and a copy of this file and email it to
mayasupport@robg3d.com. You should get a response
in three days or less. #

However, this behavior is problematic. Do we want the exception hook to be called
for every unhandled exception that happens in Maya? How about when the user

is doing her own scripting? Should we inconvenience the user with extra error
handling text? Should we tell the user to file a bug report with us if some locally
installed script raises an error?

[96]

Chapter 3

Probably not. We should filter out the exceptions that come from code that we don't
care about. The difficult part of this, though, is figuring out what care about means.
There are many ways to do this. We will look at just one way in detail, but you
should choose an approach that fits your needs. You can also combine techniques if
you want even more control over what you filter.

Inspecting Python code objects

The following technique involves inspecting code objects. This is less intimidating
than it seems, and in fact we already dealt with this sort of thing in Chapter 1,
Introspecting Maya, Python, and PyMEL. If we take a look at the following function,
we can inspect far more than its name or the module it comes from. We can see
its arguments, global and local variables, and more. And most code objects also
reference other code objects.

>>> a =1
>>> def spam(eggs=3):
b =2
return a + b + eggs
>>> spam
<function spam at 0x0...>
>>> spam.func_defaults
(3,)
>>> sorted(spam.func_globals.keys())
[* builtins_ ', ..., 'a', ..., 'spam'...]

Python tracebacks are also code objects, as we can see in the following code:

>>> def eggs() :

1+ '1!
>>> try:

eggs ()

. except TypeError:

R tb = sys.exc _info() [2] #(1)
>>> tb #(2)
<traceback object at 0x0...>
>>> tb.tb frame #(3)
<frame object at 0x0...>
>>> tb.tb_next
<traceback object at 0x0...>
>>> tb.tb frame.f globals.keys() #(4)
['a', 'spam',6 ' builtins ', ...'tb'...]
>>> tb.tb frame.f code.co filename #(5)
'<console>'

[97]

Dealing with Errors

A breakdown of the preceding code should illuminate what we are looking at:

1. We create an error so that we can capture the traceback into the tb variable
for inspection.

We see that the value of tb is a traceback instance.

The traceback is a stack of frames. Each frame describes a place in the code,
what the value of the variables are, and so on. We can look at the traceback's
frame through the tb_frame attribute. We can get the next frame by looking
at the tb_next.tb_ frame attribute. The traceback stored in tb represents the
topmost frame, furthest from the error. We can walk down the stack, toward
the site of the error, through the tb_next attribute.

4. You can access information about the frame by querying attributes on the
frame, such as the globals available to that frame.

5. You can also look at the code for the frame, and see for example what file the
code is defined in.

Don't worry if this seems dense. It is! There is obviously much more to code
objects, and we're just scratching the surface here. Having some cursory
understanding will take you far, though, and give you the ability to dig around
until you find what you need.

Adding filtering based on filename

We will filter based on the names of all the files involved in the traceback. If any of
the code in the traceback comes from one of our files, we care about it. This may be a
good approach for a studio environment, where tools will be sourced from a known
folder and some assumptions about Maya's setup can be made.

import os
import maya.utils

def normalize(p): #(1)
return os.path.normpath(os.path.abspath(p))

LIB DIR = normalize(os.path.dirname(file)) #(2)

def handle our exc(etype, evalue, tb, detail): #(3)
s = maya.utils. formatGuiException(etype, evalue, tb, detail)
lines = [
s,
'An unhandled exception occurred.',
'Please copy the error info above this message',

[98]

Chapter 3

def

def

'and a copy of this file and email it to',
'mayasupport@robg3d.com. You should get a response',
'in three days or less.']

return '\n'.join(lines)

_is important tb(tb): #(4)
while tb:
codepath = tb.tb frame.f code.co filename
if normalize(codepath).startswith(LIB DIR):
return True
tb = tb.tb next
return False

excepthook (etype, evalue, tb, detail=2): #(5)
if is important tb(tb):
return handle our exc(etype, evalue, tb, detail)

return maya.utils. formatGuiException (
etype, evalue, tb, detail)

maya.utils.formatGuiException = excepthook

The preceding code does the following;:

1.

The normalize function provides a common way to normalize a path, so
that we can compare paths on equal ground. For example, if you want the
filename comparison to be case insensitive, you would put a call to . lower ()
inside the normalize function.

We store the normalized path to the development root (C: \mayacookbook\
pylib) in the LIB_DIR variable. You may need to choose a different path for
your purposes. We care about any file under this directory.

We pull our special error handling behavior into a function. This is a likely
vector of change (and we will improve it substantially throughout this
chapter), so it is good to pull it out into its own function.

Create a function to determine whether we care about a given traceback.
We care about a traceback if any frame have code defined in a file under the
LIB_DIR path.

Inside our exception hook, we check if we care about the traceback, and
if so, handle it with our custom logic. If not, invoke the original maya.
utils. formatGuiException function.

[99]

Dealing with Errors

There are many other options for filtering out the stack traces we care about. One
technique is to set a module level __author__ attribute on all of your files, and key
off of that. In this case, all of your Python scripts would have the following line at the
module level:

__author = 'rob.galanakis@gmail.com'
And then your traceback filterer would look as follows:

def is important tb byauthor (tb) :

while tb:
auth = tb.tb frame.f globals.get (' author ')
if auth == _ author :

return True
tb = tb.tb next
return False

For the purposes of this book, we're going to continue to use the filename-based
filtering. You can also combine these techniques or key off of pretty much whatever
you want.

Assembling the contents of an error e-mail

Printing out some feedback is great, but what if you want to mail yourself
diagnostics automatically? Why not collect information about the user's machine and
scene, and automatically file a bug report via e-mail?

We will break this work into two sections. In the next section we will send the email.
In the remainder of this section, we will collect information about the user's machine
and environment that will make up the body of the e-mail. There are many ways

in Python to gather information about a machine, even more when combined with
Maya. We'll explore some of them right now.

Open up C:\mayapybook\pylib\excepthandling.py in your IDE. First we'll create
our function and collect information about the Maya scene, using the following code:

import os

import platform

import pymel.core as pmc
import sys

def collect info():
lines = []
lines.append ('Scene Info')
lines.append(' Maya Scene: ' + pmc.sceneName ())

[100]

Chapter 3

Now, let's gather information about the Maya and Python executables. This will give
us a high level view of what's going on, such as the Maya and Python versions, when
we are trying to diagnose an error.

lines.append ('Maya/Python Info')

(
lines.append (' Maya Version: ' + pmc.about (version=True))
lines.append (' Qt Version: ' + pmc.about (gtVersion=True))
lines.append (' Maya64: ' + str(pmc.about (is64=True)))
lines.append (' PyVersion: ' + sys.version)
lines.append (' PyExe: ' + sys.executable)

Third, we'll gather information about the machine and OS. Even though Python and
Maya are cross platform, they still have some OS-specific behavior and functionality.
And of course there are platform-specific system calls available. Because of this it is
useful to have information about the machine in the case of an error.

lines.append ('Machine Info')

(
lines.append(' O0S: ' + pmc.about (os=True))
lines.append (' Node: ' + platform.node())
lines.append (' OSRelease: ' + platform.release())
lines.append (' OSVersion: ' + platform.version())
lines.append (' Machine: ' + platform.machine())
lines.append (' Processor: ' + platform.processor())

Finally, let's record information about the user's environment. This is extremely
useful. Users may have configured their environment in a way that causes problems
with your scripts, such as conflicting environment variables.

lines.append ('Environment Info')

lines.append (' EnvVars')
for k in sorted(os.environ.keys()) :

lines.append (' $s: %s' % (k, os.environl[k]))
lines.append (' SysPath')

for p in sys.path:
lines.append (' '+ p)
return lines

We can simply return our list of lines to be joined with the exception information
inside the _handle our exc function. We insert the formatted error first, then the
collected info, and then the instructions to the user.

import os

import platform

import pymel.core as pmc
import sys

[101]

Dealing with Errors

def collect info():
lines = []
lines.append('Scene Info')
lines.append(' Maya Scene: ' + pmc.sceneName())

lines.append('Maya/Python Info')

lines.append(' Maya Version: ' + pmc.about (version=True))
lines.append(' Qt Version: ' + pmc.about (gqtVersion=True))
lines.append(' Maya64: ' + str(pmc.about(is64=True)))
lines.append(' PyVersion: ' + sys.version)

lines.append(' PyExe: ' + sys.executable)

lines.append('Machine Info')

lines.append(' OS: ' + pmc.about(os=True))
lines.append(' Node: ' + platform.node())
lines.append(' OSRelease: ' + platform.release())
lines.append(' OSVersion: ' + platform.version())
lines.append(' Machine: ' + platform.machine())
lines.append(' Processor: ' + platform.processor())

lines.append('Environment Info')
lines.append(' EnvVars')
for k in sorted(os.environ.keys()):
lines.append (' %s: %s' % (k, os.environl[k]))
lines.append(' SysPath')
for p in sys.path:
lines.append (" ' '+ p)
return lines

def handle our exc(etype, evalue, tb, detail):

s = maya.utils. formatGuiException (etype, evalue, tb, detail)

lines = [s]

lines.extend(collect info())

lines.extend ([
'An unhandled exception occurred.',
'Please copy the error info above this message’',
'and a copy of this file and email it to',
'mayasupport@robg3d.com. You should get a response',
'in three days or less.'])

return '\n'.join(lines)

[102]

Chapter 3

Sending the error e-mail

Now it is time to the write the code to send the error report e-mail. Python has the
email and smtplib modules in its standard library that can be used to send e-mails.

In order to send e-mails, you need to have access to an SMTP server. If
you are creating tools for use inside a business firewall, you can probably
use the company's SMTP server without any special authentication

and this is a relatively straightforward thing to do. You can just use the
address to your server instead of ' localhost'.

Ny If you are using e-mail for externally distributed tools, you will need
another solution. There are several ways you can set this up with e-mail
but they are outside of the scope of this book.

In any case, I actually suggest using a web service for reporting errors,
instead of e-mail. We cover e-mail here because it should be conceptually
familiar. Refer to the Moving beyond e-mail section later in this chapter for
other ideas.

Sending an e-mail is straightforward and if you need more help or information than
provided here, many tutorials are available on the Internet. Insert the following code
into excepthandling.py:

from email.mime.text import MIMEText
import smtplib

EMAIL ADDR = 'mayasupport@robg3d.com' # Your email here
EMAIL_SERVER = 'localhost' # Your email server here

def send email (body) :
msg = MIMEText (body)

msg['To'] = EMATL_ADDR
msg['From'] = EMAIL_ ADDR
msg ['Subject'] = 'Maya Tools Error'
server = smtplib.SMTP(EMAIL_SERVER)
try:
server.sendmail (msg['From'], msg['To'], msg.as_string())
finally:

server.quit ()

[103]

Dealing with Errors

Again, if any of the preceding code is unclear or causing problems, a simple Internet
search for Python email tutorials should set you on your way. And remember, you
need an SMTP server to send e-mail, so if you are getting something similar to the
following error when sending an e-mail, your server is probably not set up properly:

error: [Errno 10061] No connection could be made because the target
machine actively refused it

We need to adjust our _handle_our_exc function to send an e-mail. We will inform
the user an e-mail has been sent because an error has occurred, along with the error.
The diagnostic information will only go in the e-mail.

def handle our exc(etype, evalue, tb, detail):

s = maya.utils. formatGuiException(etype, evalue, tb, detail)

body = [s]

body.extend(collect info())

_send_email ('\n'.join (body))

lines = [
S,
'An unhandled exception occurred.',
'An error report was automatically sent to ',
EMAIL ADDR + ' with details about the error. ',
'You should get a followup response in three days '
'or less.']

return '\n'.join(lines)

It would also be a good idea to handle any error that may occur while sending the
e-mail, perhaps printing the body of the e-mail with instructions on how to send it
manually. This is left as an exercise for the reader.

Installing the error handler

So far, our exception hook is installed (assigned to maya.utils.
formatGuiException) when the excepthandling module is imported. This is a
problem because it means excepthandling needs to be imported for the exception
hook to be assigned. If you have a whole suite of tools, you will need to make sure
excepthandling is imported early on. If you are distributing lots of separate tools,
you will want to make sure each one imports excepthandling.

There is another problem, though. Imagine two people have read this chapter and
created their own excepthook replacements which are assigned over maya.utils.
formatGuiException. These two people then write and release some scripts. These
two scripts are then installed by the same user. What would happen?

[104]

Chapter 3

Obeying the What If Two Programs Did
This rule

The What If Two Programs Did This rule is a technique to evaluate features and
designs by asking the question: What if two programs did this? It comes from
Microsoft programmer Raymond Chen's blog post at http://blogs.msdn.com/b/
oldnewthing/archive/2005/06/07/426294 .aspx. In the post he explains:

""How do I create a window that is never covered by any other windows, not even
other topmost windows?"

Imagine if this were possible and imagine if two programs did this. Program
A creates a window that is "super-topmost" and so does Program B. Now the

user drags the two windows so that they overlap. What happens? You've created
yourself a logical impossibility. One of those two windows must be above the other,
contradicting the imaginary "super-topmost" feature."

In the case of sys.excepthook and maya.utils.formatGuiException, we need to
store the original function and call it if it isn't the default exception hook. As long as
all exception hooks adhere to this rule, every hook will be called. On the other hand,
if an exception hook simply invokes maya.utils._ formatGuiException (equivalent
to sys.__excepthook), we would not get this chaining effect.

In the case of formatGuiException, the chaining does not make total sense because
formatGuiException is meant to return a value. However, we should dutifully do it
anyway, so any side effects that do happen (like sending an e-mail) occur, even if our
feedback is not printed to the user.

M We can also print the results of any chained formatGuiException
Q calls, but since there's no right answer in this situation I'll choose to do
the simplest thing. You can choose otherwise if it makes sense to you.

Let's go ahead and make the highlighted changes to our code:

_orig excepthook = maya.utils.formatGuiException

def excepthook (etype, evalue, tb, detail=2):
result = orig excepthook(etype, evalue, tb, detail)
if is important tb(tb):
result = handle our exc(etype, evalue, tb, detail)
return result

maya.utils.formatGuiException = excepthook

[105]

http://blogs.msdn.com/b/oldnewthing/archive/2005/06/07/426294.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2005/06/07/426294.aspx

Dealing with Errors

When the module is imported, it stores the value of formatGuiException, which
could have been the original _formatGuiException or something installed by
another script. Then inside our hook, we call the stored exception hook, but then call
our own exception hook and use that string if we care about the traceback. As long as
other exception hooks are equally considerate, we should be in good shape.

Improving the error handler

There are many more things that can be done to this exception handler.

How important each one is depends on your use case. I encourage you to give
each one thought, but as always, release the simplest thing that works. Especially
when you are dealing with error handlers, simpler is better. You don't want errors
in your error handlers!

Adding a user interface

It may not be a good idea to send information about a user's machine without
consent. Users should either opt in for automatic reporting (like Google Chrome
automatic statistics gather), or manually approve sending the information when an
error happens (like Autodesk's Customer Error Reporting system). My preference is
for the latter option, which allows the user to preview the issue and submit any other
information that may be helpful. The easiest way to do this is to pop up a dialog
when an error happens, previewing the contents of the e-mail. This also gives you

a good place to put any other customizations, such as showing a textbox to enter a
description or reproduction steps, setting a window title, and providing a way to
include attachments.

Obviously the dialog should only pop up when not in batch mode. When in batch
mode, things should be automatically handled or ignored.

1
‘Q Refer to Chapter 5, Building Graphical User Interfaces for Maya, to

learn how to build dialogs like the one described here.

Before you collect a user's information and copy it off her computer, ensure
your collection and reporting mechanisms are secure, reliable, and you have the
user's consent.

[106]

Chapter 3

Using a background thread to send the e-mail

Sending an e-mail or talking to an external server can take a while, perhaps a second
in the case of success, or an unknown time if the external server is unresponsive. It
would be inconsiderate to lock up a user's Maya session while the error report e-mail
is being sent!

Before our error handler is ready for prime time use, make sure sending the email or
communicating with any external service occurs on a background thread. Threading
is outside of the scope of this book, but the change would look similar to the
following code:

def send email in background (body) :
t = threading.Thread(
target=_send email, args=(body,),
name='send email in background')
t.start ()

You would then call send email in background instead of send email inside
the handle our exc function. I'd also recommend the use of a concurrency library
like gevent rather than the standard library's threading module.

Moving beyond e-mail
E-mail is incredibly prolific. However, it can also be very basic and limiting. Instead
of reporting through e-mail, you can also report through several other mechanisms.

If you are on a company intranet, you can log errors directly to a database or place
files on a network drive. However, I'd encourage you to choose one of the other
options explained in the next paragraph. They are not much more difficult but they
are much more robust.

If you have a bug tracker or a task management system, whether something complex
like JIRA (http://jira.com) or simple like Trello (http://trello.com), you can
use their web APIs to upload exception reports there. You can also build your own
web service to do this sort of thing and back it with a database.

Capturing locals

It is very useful to know what the actual values of variables are all along the stack
when an exception occurs. For example, instead of just seeing IndexError: list
index out of range, it would be great to see the actual values of both the list and
the out of range index.

[107]

http://jira.com
http://trello.com

Dealing with Errors

This is a more advanced project but it is not too difficult to roll your own way to
capture locals and globals all the way up the stack using the inspect module.
You can also look at the traceback2 module at https://code.google.com/p/
traceback2/.

If you want something off the shelf and the size of your project is worth it, there's
the open source Sentry server (http://sentry.readthedocs.org/) and Raven
client (http://raven.readthedocs.org/) system.

Attaching log files

If you have been logging to files, you can attach all the log files that currently exist

to the bug reporting e-mail. It is relatively simple to collect this data, and there are
many examples on the Internet of how to use attachments with e-mail. The following
code will find all log files:

import logging
log filenames = set () # Avoid duplicates
for logger in logging.Logger.manager.loggerDict.values () :
for handler in getattr(logger, 'handlers', []):
try:
log filenames.add(handler.baseFilename)
except AttributeError:
pass

You can also echo Maya's Script Editor history to a file and include that in your
e-mail. The following code will log all new output in the top pane of the Script Editor
into a . log file in the current working directory.

pmc.scriptEditorInfo (
writeHistory=True,
historyFilename='.log"')

[108]

https://code.google.com/p/traceback2/
https://code.google.com/p/traceback2/
http://sentry.readthedocs.org/
http://raven.readthedocs.org/

Chapter 3

Summary

In this chapter we took a close at look at how Python's exceptions work. We defined
what an exception is and learned that dealing with exceptions and errors is a fact of
programming life. We examined in detail the interesting traceback type and the
exc_info tuple. We learned a set of best practices for handling errors, and how those
best practices apply to Maya.

We spent the rest of the chapter putting together an exception hook function that
will send an e-mail if any unhandled exception occurs in code we care about.

We closed the chapter by covering several ways we can potentially improve our
exception hook.

In the next chapter, we'll look at two relatively unique features of Python: context
managers and decorators. They will help us fill in several holes while programming
Maya and be more Pythonic.

[109]

Leveraging Context
Managers and Decorators
iIn Maya

Context managers and decorators are two Python features that open up many
powerful programming patterns. Many of these end up being incredibly useful in
Maya, allowing us to map the archaic, imperative style of Maya command calls onto
Pythonic code using flexible, modern idioms.

In this chapter, we will learn what context managers and decorators are, why they
are useful, how they work, and when to use one instead of the other. After that,
we'll build a number of simple context managers for safely modifying scene state.
Using what we've learned, we will work on two projects: a context manager for
denormalizing vertex skinning, and a decorator to record metrics. We will close out
the chapter by analyzing some advanced decorator topics.

Inverting the subroutine

The idea of taking code that is similar between two blocks and factoring it out into a
common function (also known as a subroutine) is well known. We've done it several
places in this book. For example, the following block of code sets up objects for left
and right feet, which are just mirrored. Nearly all of the code, except for the name of
the sphere and its x translation, is duplicated.

>>> leftfoot = pmc.polySphere (name='left foot') [0]
>>> leftfoot.translate.set (5, 0, 0)
>>> # ...other code that changes left foot

Leveraging Context Managers and Decorators in Maya

>>> rightfoot = pmc.polySphere (name='right foot') [0]
>>> rightfoot.translate.set (-5, 0, 0)
>>> # ...same code, but for right foot

We can refactor the duplicated code into the makefoot function.

>>> def makefoot (prefix, x=1):
foot = pmc.polySphere (name=prefix + ' foot') [0]
foot.translate.set (5 * x, 0, 0)
...other code that changes foot

R return foot

>>> leftfoot = makefoot ('left', 1)

>>> rightfoot = makefoot('right',6 -1)

But what happens when the code we want to take out isn't the block itself, but

everything around the block? For example, what if we want the creation of the

individual feet to be undo-able as a single undo? This involves duplicated code
before and after calling the makefoot function, as in the following example.

>>> pmc.undoInfo (openChunk=True)
>>> try:
leftfoot = makefoot ('left', 1)
finally:
pmc.undoInfo (closeChunk=True)
>>> pmc.undoInfo (openChunk=True)
>>> try:
rightfoot = makefoot ('right', -1)
finally:
pmc.undoInfo (closeChunk=True)

Both context managers and decorators provide a way to make that common setup
and teardown code modular and reusable. Using the context manager mayautils.
undo_chunk, which we will build later in this chapter, we could rewrite the
preceding code as follows:

>>> import mayautils
>>> with mayautils.undo chunk() :
leftfoot = makefoot ('left', 1)
>>> with mayautils.undo chunk() :
rightfoot = makefoot ('right', -1)

[112]

Chapter 4

Alternatively, if we were to create a decorator, we would have something like this:

>>> @mayautils.chunk undo
. def makefoot (prefix, x=1):
foot = pmc.polySphere (name=prefix + ' foot') [0]
foot.translate.set (5 * x, 0, 0)
Other code that changes foot
>>> leftfoot = makefoot ('left', 1)
>>> rightfoot = makefoot('right',6 -1)

Clearly, this is much nicer! Let's explore these two humble constructs that can
transform the way we program.

Introducing decorators

Decorators are the single most unfortunately explained language feature of Python.
An improved way to teach decorators was presented by Steve Ferg on his blog:
http://pythonconquerstheuniverse.wordpress.com/2012/04/29/python-
decorators/. I've adapted his suggestions for use in this section.

Decorators associate setup and teardown functionality with some callable object. In

the preceding example, we associated the functionality of "each time some function

is called, it can be undone as a single block" with the makefoot function. There is no
way to call makefoot without this new behavior added by the decorator.

Explaining decorators

I find it easiest to explain decorators by working from very basic Python and
eventually ending with the funky e line that goes above a function.

In Python, anything witha __call__ method is known as a callable. Functions
are one type of callable. There is basically no difference between calling something
directly, and invoking its _ call__ method, as the following code illustrates.

>>> def add(a, Db):
.. return a + b
>>> add(1, 2)

3
>>> add. call
<method-wrapper '__call_ ' of function object at 0x0...>

>>> add. call (1, 2)
3

[113]

http://pythonconquerstheuniverse.wordpress.com/2012/04/29/python-decorators/
http://pythonconquerstheuniverse.wordpress.com/2012/04/29/python-decorators/

Leveraging Context Managers and Decorators in Maya

Functions in Python are first class objects, which among other things means they

can be passed around like any other object. You can pass a function into another
function, and return them as well, as we do in the following example. First we define
the nothing function, which just returns the function passed into it. After that, we
invoke nothing with the add function defined in the preceding example. Finally, we
invoke add, returned to us from the nothing function.

>>> def nothing (func) :
.. return func
>>> nothing(add) (1, 2)
3

As we've done earlier in this book, we can create functions inside of other functions,
which we've called closures, nested functions, or inner functions. We can then return
that nested function from its outer function. In the following example, the makeadd
function returns the newly created adder nested function, which is then called to do
the actual calculations.

>>> def makeadd() :
def adder(a, b):
return a + b
.. return adder
>>> makeadd () (1, 2)
3

A nested function can use the argument passed into its outer function. In the
following example, the caller passes the original add function into the makeadd
function. Inside of the nested inner function, the passed in function is used, rather
than doing the addition directly as in the previous example.

>>> def makeadd (adder) :
def inner(a, b):
return adder(a, b)
. return inner
>>> makeadd (add) (1, 2)
3

Inside of our nested function, we can do additional things. In the following code, we
will print what we are adding, call the passed in function, and then print the result.

>>> def announce (adder) :
def inner(a, b):

print 'Adding', a, b

result = adder(a, b)

[114]

Chapter 4

'Got', result

return result

print

return inner
>>> announce (add) (1, 2)
Adding 1 2
Got 3

3

Of course, there's no reason this technique should only work for our add function.
Let's generalize it. The following announce function takes in another function and
defines and returns a closure. The closure prints the passed function's name, calls
the function, and prints and returns the result. Instead of the add function we've
been using, we define a subtract function and announce that.

announce (func) :
def inner(a, b):
'Calling’,

>>> def

print
result = func(a, b)
'Got ',

return result

print

return inner

>>> def subtract(a, b):
return a - b

>>> announce (subtract) (1, 2)

Calling subtract 1 2

Got -1

-1

func. name ,

result

a, b

To generalize further, our closure can take an arbitrary number of arguments.
We can use Python's *args and **kwargs syntax to just pass the arguments
through to the original function. If you are unfamiliar with this syntax, refer to

the Appendix, Python Best Practices.

announce (func) :
def inner(*args,
'Calling’',

>>> def

print
result =
'Got ',

return result

print

return inner
add3 (a, b,
return a + b + ¢
2)

>>> def c):

>>> announce (add) (1,

func._ name__,
func (*args,
result

**kwargs) :

args, kwargs

**kwargs)

[115]

Leveraging Context Managers and Decorators in Maya

Calling add (1, 2) {}

Got 3

3

>>> announce (add3) (1, 2, 3)
Calling add3 (1, 2, 3) {}
Got 6

6

Also, instead of calling our returned closure immediately, we can assign it to a
variable. In the following code, we assign the result of calling the announce function to
the loud add variable. We can then call that variable as we would a normal function.

>>> loud _add = announce (add)
>>> loud add(1, 2)

Calling add (1, 2) {}

Got 3

3

Instead of creating the 1oud_add variable, we can just reassign over add, so that
whenever it is called it will have the print behavior imbued into it through announce.

>>> add = announce (add)
>>> add (1, 2)

Calling add (1, 2) {}
Got 3

3

This last example is all the @ decorator syntax is short form for. Using @announce
is the same as calling it with our function and reassigning over the function. In
the following code, we decorate the divide function with announce by using the
decorator syntax above the divide declaration:

>>> @announce
. def divide(a, b):
.. return a / b
>>> divide (10, 2)
Calling divide (10, 2) {}
Got 5
5

What is seen by outsiders and newcomers as a bizarre syntax or obscure feature
proves itself to be elegant, straightforward, and surprisingly useful. Decorators give
us a way of inverting the subroutine and factoring out setup and teardown code into
something reusable.

Let's look at an example of where we can use decorators in Maya.

[116]

Chapter 4

Wrapping an exporter with a decorator

More than once in my career I've had to use an exporter or other middleware that
operates on the current selection instead of a collection of objects. This is a pet peeve
of mine but alas, the practice abounds among plugin writers, and occasionally inside
of Maya itself.

We can create a preserve selection decorator that will store the selection, call the
function being decorated, and then restore the selection.

def preserve selection(func):
def inner (*args, **kwargs): #(1)
sel = list(pmc.selected()) #(2)
result = func(*args, **kwargs) #(3)
pmc.select (sel, replace=True) #(4)
return result #(5)
return inner #(6)

The code works as follows:

1. Inside of our decorator, define a closure named inner that takes any
positional and keyword arguments.

2. Store the current selection.

3. Invoke the passed function func and store the result. Invoking this
function may change the current selection.

4. Restore the original selection.
5. Return the value the passed function returned.
6. Return the closure, which will replace the decorated function.

We can use our decorator as follows. The superExporter function is a pretend
exporter that will export selected objects. The export_char meshes function must
change the selection before it calls superExporter. It uses the preserve_selection
decorator to make sure the selection is restored after export.

@preserve_selection
def export_ char_ meshes (path) :
objs = [o for o in pmc.ls(type='mesh')
if ' char ' in o.name()]
pmc.select (objs)
pmc . superExporter (path)

The decorator works well here because the fact that export_char meshes changes
the selection is an implementation detail of the function. Callers should not expect
that an export function would change the selection. You can hide this behavior with
the preserve_selection decorator, so selection preservation happens every time
export_char meshes is called.

[117]

Leveraging Context Managers and Decorators in Maya

But what if we want to factor out setup and teardown code like selection preservation,
but don't want it to be associated with a function? What if we want to be able to use it
at arbitrary points in our code? To do this we can use a context manager.

Introducing context managers

Context managers are explained in detail in PEP 343: The "with" statement
(http://www.python.org/dev/peps/pep-0343/). You shouldn't bother reading it
unless you really care about the intricacies of Python itself. In simple terms, it adds
the with keyword to Python, so statements like the following are possible:

>>> with open('myfile.txt') as f:
text = f.read()

These two lines open a file for reading, and assign the contents of the file to the text
variable. It uses the open function as a context manager. It is almost equivalent to
these three lines:

>>> £ = open('myfile.txt")
>>> text = f.read()
>>> f.close()

This naive code harbors a potential problem. If calling £ .read () raises an exception,
the file's close method is never called. The file may be opened and locked by Python
until the process dies. Ideally, we'd want to make sure the file is closed if an error
happens. We can use the with statement, like we did in the first example, to make
sure the file gets closed when we're done with it.

Generally, the c1ose method will be called when £ is garbage collected
(its memory is freed), which happens some point after £ cannot be used
(falls out of scope). In CPython (the standard implementation of Python
and what Maya uses), the issue of an open file hanging around is not a
problem, because it uses reference counting for garbage collection and £
" will be freed immediately. In other Python implementations (for example,

% IronPython, which is used by Autodesk 3ds Max), a generational
garbage collector may be used which makes no guarantees about when
£ would be freed. It would occur at the next collection, which can occur
whenever.

This is highly technical stuff and you can avoid having to deal with it if
you just stick to using best practices.

[118]

http://www.python.org/dev/peps/pep-0343/

Chapter 4

Using with and the open context manager expands to something like the following.
Note that any exception that occurs will still be bubbled up after the file is closed.

open can fail,
so make sure the variable is referenced
>>> f = None
>>> try:
f = open('myfile.txt")
text = f.read() # only happens if open succeeds
finally:
if £: # If open failed, f is still None
f.close()

An object is considered a context manager and can be used by the with statement if
it has the following two methods:

def enter (self):
def exit (self, exc type, exc value, exc_tb):

The _enter method should return what is assigned from the with. For example,
the open context manager returns the file object from its __enter _ method, which
we assigned to the variable £. The __exit__ method takes the expanded exc_info
tuple. We will look at these two methods in more detail throughout this section.

To create context managers, we'll need to use custom classes. If you're not familiar
with object oriented programming, don't worry. This is very lightweight stuff and
odds are if you have gotten this far in the book you can follow along. If you get lost,
we discuss custom Python classes in Chapter 7, Taming the Maya API.

The pattern to safely open a file that was demonstrated earlier can be implemented
with the following class (and this is basically how open as a context manager can be
thought of):

>>> class safeopen (object) :

def init (self, *args, **kwargs):
self.args = args
self.kwargs = kwargs
self.f = None

def enter (self):
self.f = open(*self.args, **self.kwargs)
return self.f

def exit (self, *exc info):
if self.f:

self.f.close()

[119]

Leveraging Context Managers and Decorators in Maya

We can use this new type just like the open builtin.
>>> with safeopen('myfile.txt') as f:

text = f.read()

Note that we return the opened file object from the __enter__ method. This allows
it to be assigned as the target of the with statement. Let's build a context manager
that will more precisely demonstrate when all of these methods are called and how
they behave.

>>> class demo (object) :

def init (self):
print 'init' #(1)

def enter (self):
print 'entered' #(2)
return 'hello!' #(3)

def exit (self, *exc info):
print 'exited. Exc_info:', exc info #(4)

Let's look at this code in detail. We will see an example usage next.

1. When an instance of demo is created, the string 'init' is printed.
When the context manager is entered, the string 'entered' is printed.

The string 'hello! ' isreturned from __ enter_ .

Ll

When the context manager is exited, we print 'exited' and the
exception information.

When we use the demo context manager, we see the following printed:

>>> with demo () as d:
print 'd is', d
init
entered
d is hello!
exited. Exc_info: (None, None, None)

If we raise an error while under the context manager, we see different feedback:

>>> with demo() as d:
.. raise RuntimeError ('hi')
init

entered
exited. Exc info: (<type 'exceptions.RuntimeError's>,
RuntimeError('hi',), <traceback object at 0x0...)

Traceback (most recent call last):
RuntimeError: hi

[120]

Chapter 4

The arguments to __exit__ are all None if there was no exception under the context
manager, as in the first example. If there was an exception, the arguments will be
filled in appropriately, as in the second example.

It is relatively rare to handle exceptions inside of the __exit__ method. There are
other details to its behavior, such as special return values, that will not be covered.
Just think about it as you would a £inally block.

We'll now use context managers to implement two different ways to handle undo.
The first will wrap a series of commands in an undo block via the undo_chunk
context manager. After that, we will look at the __exit_ method in more detail and
create an undo_on_error context manager.

There is also a context1lib module that has a contextmanager
decorator that can turn a function into a context manager. This form
+ ends up being much more convenient than the explicit enter and
__exit__ methods on a custom class. However it is also more magical so
’ I've chosen not to present it here. If you find yourself writing a significant
number of context managers, you should learn how to use it. It can really
streamline your code, especially for simple cases.

Writing the undo_chunk context manager

As we saw in Chapter 3, Dealing with Errors, the undoInfo command is a perfect use
case for a context manager. It has setup and teardown code, and it must be called
correctly or undo queue mayhem may ensue. Not every good use case has so many
similarities with Python's open function, but when something does, it is usually a
good candidate to be wrapped with a context manager.

Go ahead and create a mayautils.py file in your development root. In our case,
we're creating C: \mayapybook\pylib\mayautils.py. Open it up in your IDE and
add the following code to create a context manager that will open an undo chunk
when entered, and close it on exit.

import pymel.core as pmc

class undo chunk (object) :
def enter (self):
pmc.undoInfo (openChunk=True)
def exit (self, *):
pmc.undoInfo (closeChunk=True)

[121]

Leveraging Context Managers and Decorators in Maya

We can then use it in our code wherever we need to open and close an undo
chunk. In the following code, note that both joints are removed when we call
the undo function.

>>> with mayautils.undo chunk () :
pmc.joint (), pmc.joint ()

(nt.Joint (u'jointl'), nt.Joint (u'joint2'))

>>> pmc.ls (type="'joint')

[nt.Joint (u'jointl'), nt.Joint (u'joint2')]

>>> pmc.undo ()

>>> pmc.ls (type="'joint')

(]

That's all there is to it! You now have a way to wrap a block of code into a single
undo, and ensure chunks will be opened and closed properly.

Writing the undo_on_error context manager

Going back to the usage of undo as an error handling mechanism from last chapter,
we can actually extract a useful context manager from the code we wrote. Let's
review the original code and behavior.

>>> pmc.undoInfo (openChunk=True)
>>> try:
for £ in pmc.ls(type='file'):
f.ftn.set(f.ftn.get () .lower())
pmc.undoInfo (closeChunk=True)
except:
pmc.undoInfo (closeChunk=True)
pmc . undo ()
.. raise
Traceback (most recent call last):
RuntimeError: setAttr: The attribute 'file2.fileTextureName' is locked
or connected and cannot be modified.
>>> [f.ftn.get () for f in pmc.ls(type='file')]
[WFINO', u'FIN1', u'FTN2']

This code is creating and closing an undo chunk, and calling undo in the case of an
error. It is a way to roll back a failed operation. We can extract this behavior into a
new context manager in mayautils.py:

class undo _on_error (object) :
def enter (self):
pmc.undoInfo (openChunk=True)

[122]

Chapter 4

def exit (self, exc type, exc val, exc_tb):
pmc.undoInfo (closeChunk=True)
if exc val is not None:
pmc . undo ()

Inthe exit__ method, we check if exc_val is None as a way of determining if

an error occurred. Recall that it will be None if no error occurred, and set to the
exception instance if an error did occur. We can hook this context manager up to the
original code and see how it is simplified but keeps the rollback behavior.

>>> with mayautils.undo on error():
for £ in pmc.ls(type='file'):
f.ftn.set (f.ftn.get () .lower())
Traceback (most recent call last):

RuntimeError: setAttr: The attribute 'file2.fileTextureName' is locked
or connected and cannot be modified.

>>> [f.ftn.get () for f in pmc.ls(type='file')]
[U'FINO', u'FIN1', u'FTIN2']

Contrasting decorators and context managers

The difference between context managers and decorators is that context managers
associate the setup and teardown with the caller; decorators associate it with the
callee. For example, consider the difference between using undo_chunk as a
context manager:

def makearm(prefix, xaxis=1):

with undo chunk():
leftarm = makearm('left', 1)

Compared to using it as a decorator:

@Qundo_chunk
def makearm(prefix, xaxis=1):

leftarm = makearm('left', 1)

The makearm function definition is the callee, and the invocation of makearm('left',
1) is the caller. If you want the setup and teardown to happen every time something is
called, you should prefer to use a decorator. If you want the caller to control the setup
and teardown (as we would expect for undo), use a context manager.

[123]

Leveraging Context Managers and Decorators in Maya

When to choose a decorator and when to choose a context manager is not always
clear cut and often comes down to: how can this functionality be used most conveniently?
In the case of undo_chunk, a context manager seems to make the most sense. It is
usually up to the caller to decide whether something is a single undo block.

In the end, though, it comes down to whatever is more convenient and will result in
better code. Actual programming is always blurry and full of compromises, much
more than examples in a book can be. Use your judgment.

There may also be reasons to have the same functionality as both a context manager
and decorator. We will only use one or the other in this book, but various third-party
libraries and frameworks (such as mock and django) have objects that can be used as
either. The following code illustrates how the mock.patch function can be used as a
context manager or decorator.

>>> import mock, sys
>>> with mock.patch('sys.executable') :
print sys.executable
<MagicMock name='executable' id='...'>
>>> @mock.patch('sys.executable', mock.MagicMock())
. def fool():
print sys.executable
>>> foo ()
<MagicMock id='...'>

Context managers for changing
scene state

One frustrating aspect of Maya's design, from a coding perspective at least, is the
single global scene and application state. To ensure state is changed and restored
effectively, we can use context managers. There are a few common or interesting
areas where we may want to apply them.

You can put all of the context managers we create in the following sections into
mayautils.py. For the most part, their usage follows the same patterns we've
already seen, so I've chosen not to clutter the chapter with demonstrations. The code
files with this book include tests you can run to see them in action.

[124]

Chapter 4

Building the set_file_prompt context manager

One often overlooked flag on the bloated maya . cmds . £ile command is the prompt
keyword. Using False disables most file prompts. However, this flag is not a
customization flag that is used when the £ile command is invoked. It is a stateful
flag that must be set separately from other calls to £ile. To safely call £ile with
prompting on or off requires four lines: store the existing prompt value, turn prompt
on or off, use the file command, and restore the original prompt value. We should
combine these into a single context manager.

class set_file prompt (object) :

def _ init_ (self, state):
self.state = state
self.oldstate = None

def _ enter (self):
self.oldstate = cmds.file(g=True, prompt=True)
cmds.file (prompt=self.state)

def exit_ (self, *_):
if self.oldstate is not None:

cmds.file (prompt=self.oldstate)

It's usually a good idea to leave prompt enabled in a Maya GUI session. For example,
we usually want a user to know if there is an error exporting a file. Use a context
manager to ensure prompt is set back to its old value if you end up needing to
temporarily suppress prompts in your scripts.

There are two other important things to note that will show up in other context
managers in this chapter.

First, we set self.oldstate = None in the object's __init method, and then
check if it is None inside of the __exit _ method. This is because it is possible that
the setting of oldstate inside of the __enter method can fail for some exceptional
reason. We only want to restore oldstate if we were able to query it successfully
inside of __enter__. We will use this pattern for Boolean values repeatedly.

Second, we do not bother listing the arguments to __exit . Weuse *_asa
convention that says we are ignoring the exception information. You can certainly have
the three exc_info arguments every time, but I find it cleaner to just use *_ when I
am ignoring themin __exit_ .

[125]

Leveraging Context Managers and Decorators in Maya

Building the at_time context manager

There can be only one current time in Maya. And sometimes, a command must affect
a particular time and not the current time. Use the following context manager to
temporarily change the current time.

class at_time (object) :

def _ init_ (self, t):
self.t = t
self.oldt = None

def _ enter (self):
self.oldt = pmc.getCurrentTime ()
pmc.setCurrentTime (self.t)

def exit (self, *_):
if self.oldt is not None:

pmc.setCurrentTime (self.oldt)

While Maya's built-in commands are usually flexible enough to allow the caller

to specify the time, sometimes a third-party script or plugin is not. This sort of
limitation is unfortunately common. Using a context manager will allow you to wrap
a bad interface into something more Pythonic.

Building the with_unit context manager

Similar to time, there can be only one current unit in Maya for each type of unit:
linear, angular, and time. We can create a context manager to preserve and restore all
of them while we temporarily change one of the units.

class with unit (object) :
def init (self, *args, **kwargs):
self.args = args
self.kwargs = kwargs
self.oldlin, self.oldang, self.oldtim = None, None, None
def enter (self):
self.oldlin = pmc.currentUnit (g=True, linear=True)
self.oldang = pmc.currentUnit (g=True, angle=True)
self.oldtim = pmc.currentUnit (g=True, time=True)
pmc.currentUnit (*self.args, **self.kwargs)
def exit (self, *):
if self.oldlin is not None:
pmc.currentUnit (linear=self.oldlin)
if self.oldang is not None:
pmc.currentUnit (angle=self.oldang)
if self.oldtim is not None:
pmc.currentUnit (time=self.oldtim)

[126]

Chapter 4

The same rationale and design for at_time also applies to with_unit. The
implementation is slightly more complex because we store and reset every unit.

Building the set_renderlayer_active context
manager

The following context manager will temporarily set a given render layer active.

class render layer active (object) :

def init (self, renderlayer):
self.renderlayer = renderlayer
self.orig layer = None

def enter (self):
self.orig layer = pmc.nodetypes.RenderLayer.currentlLayer ()
self .renderlayer.setCurrent ()

def exit (self, *):
if self.orig layer is not None:

self.orig layer.setCurrent ()

We should note both how obvious this pattern should seem by now, and more
importantly, the benefits of PyMEL. We do not have to worry about what the
command is for setting a render layer active. We can just use the setCurrent
method on the PYMEL RenderLayer instance.

Building the set_namespace_active context
manager

Use the following context manager to make a namespace active for a block of code. It
will ensure that the previously active namespace is restored when the code finishes,
even in the case of error.

class set namespace_active (object) :
def init (self, ns):
if ns == '':
This would be too ambiguous, so prohibit it
raise ValueError ('argument cannot be an empty string')
self.ns = ns
self.oldns = None
def enter (self):
self.oldns = pmc.namespacelInfo (currentNamespace=True)
pmc.namespace (setNamespace=self .ns)

[127]

Leveraging Context Managers and Decorators in Maya

def exit (self, *):
if self.oldns is not None:
oldns = ':' + self.oldns.lstrip(':")

pmc.namespace (setNamespace=oldns)

Namespaces have traditionally been a nasty area of Maya programming so there are
a few things to note.

First, while we've made the decision to use PyMEL objects throughout this

book, PyMEL generally uses Unicode strings for namespaces, even though it

has a Namespace type. So pmc . namespace (set=ns) works with a string or
Namespace instance, and PyNode .namespace () (a method on all PyNode instances)
returns a Unicode string instead of a Namespace instance. I'm not sure of the reason
for the choice.

Refer to Appendix, Python Best Practices, for a brief introduction to
= Unicode strings.

Second, and for an equally confounding reason, the root namespace (' : ') cannot
be represented as a PYMEL Namespace instance. It is easier to make a consistent
exception here and use strings for namespaces than it is to try to use PyYMEL
Namespace objects.

Third, PyNode . namespace () will actually return an empty string if the PyNode

is in the root namespace. This is bizarre. An empty string should not be a valid
namespace (perhaps it could be said to represent the current namespace, sort of like
the current working directory on the OS, but that design isn't presented consistently).
So when we create our context manager, we check explicitly for the very ambiguous
empty string and do not allow it. We could also assume an empty string is the root
namespace (so the same as ' : '), but I feel it is better to be explicit.

It is worth commenting that this ambiguity about what a string means is precisely
the type of thing that using PyMEL objects instead of strings removes. Using PyMEL
for namespaces would also remove the concept of relative and absolute namespace
strings. A namespace simply is and can be interpreted and used much more

easily. You would not pass relative or absolute namespaces. You would just pass a
namespace. In short: prefer PyMEL, except when it's so strange that even PyYMEL
doesn't use PyMEL.

And finally, we've made the decision here to deal with absolute namespaces only.
Inside of the __exit__ method, we trim off any leading colons and re-root the
original namespace. There may be some issues with this implementation depending
on your use case. This code works for absolute namespaces, including the root
namespace. If you need to deal with relative namespaces, you may need a different
implementation. Your mileage may vary.

[128]

Chapter 4

Improving on future versions of Maya

We've looked at context managers for working with various gnarly places in the
Maya commands system. It is likely there are others. In future versions of Maya there
will undoubtedly be new problem areas. Occasionally, due to Autodesk or PyMEL
developers, problem areas will be fixed. The same patterns we've applied here will
continue to apply everywhere we find an imperative, non-Pythonic MEL command
system wrapped with Python.

And even when you're programming Python outside of Maya, you can use these
lessons to wrap any non-Pythonic system behind something more enjoyable to use.

Creating the denormalized_skin context
manager

In this and proceeding sections, we'll build a context manager that will temporarily
denormalize a skin cluster.

Most skin clusters are normalized and support a limited number of influences. A
skin is normalized when the sum of all influence weights equals 1.0 for each vertex.
This ensures the skin deforms in a predictable way. Limiting the number of vertex
influences is generally useful when doing things like painting skin weights. It can
also be a technical constraint (for example in the case of many video games), or a
useful way to simplify the skinning process (you don't need to worry about culling
low influences repeatedly).

Even though normalized skin and limited influences are useful for interactive work,
they can be a pain for scripting. Sometimes we want to set the values of influences
explicitly, and normalize and cull influences at the end. We will build a context
manager to facilitate this.

The lessons here can be applied to wherever you have a context manager or
decorator that changes the state of one or several Maya nodes.

Safely swapping vertex influences

Let's start by building a simple way to turn normalization and maximum
influences off. The code follows the now-familiar pattern of save state, change
state, reapply changed state. Let's put this code into a new skinutils.py file
in the development root.

class denormalized skin(object) :
"ninTyrng off skin cluster normalization and maintaining

[129]

Leveraging Context Managers and Decorators in Maya

max influrnces."""
def init (self, skinCl):
self.skinCl = skinCl
self .maxInfl, self.norm = None, None
def enter (self):
self .maxInfl = self.skinCl.maintainMaxInfluences.get ()
self.norm = self.skinCl.setNormalizeWeights (g=True)
self.skinCl.maintainMaxInfluences.set (False)
self.skinCl.setNormalizeWeights (0)
def exit (self, *):
if self.maxInfl is not None:
self.skinCl.maintainMaxInfluences.set (self.maxInfl)
if self.norm is not None:
self.skinCl.setNormalizeWeights (self.norm)

An example use would be retargeting vertex weights from one influence to another,
like in the case of mirroring skinning between left and right sides of a character. It is
useful to denormalize the skin cluster so a single influence can be swapped without
affecting the other influences. The following code will swap two influences on a
given vertex using the denormalized_skin context manager.

def swap_ influence (skinCl, vert, inflA, inflB):
""n"For a given vertex,
swaps the weight between two influences."""
valA = pmc.skinPercent (skinCl, vert, g=True, t=inflAa)
valB = pmc.skinPercent (skinCl, vert, g=True, t=inflB)
with denormalized skin(skinCl) :
pmc.skinPercent (skinCl, vert, tv=[inflA, wvalB])
pmc.skinPercent (skinCl, vert, tv=[inflB, wvalA])

If we do not denormalize before swapping, we could have subtle bugs. In between
the last two skinPercent calls, the weight of other influences can change. This can
wreak havoc with maintaining max influences, rounding errors, and rigid weights
(a weight of 1.0 to a single influence). So we denormalize before swapping, and
renormalize when swapping is complete, to make sure we don't run into issues.

See this chapter's accompanying code for examples. You would use it as follows:

>>> swap_influence (
skinCluster,
plane.vtx[0],
jointleft,
jointright)

[130]

Chapter 4

Addressing performance concerns

Even though the preceding code works, it will be very slow when used in
production. As written, if we wanted to swap 1000 vertices, we would need to make
6000 calls to setNormalizeWeights and maintainMaxInfluences, instead of just
the six we'd ideally use. We have two options:

1. Move the context manager out of the function and into the caller. The
function docstring should mention that it requires the skin cluster to be
denormalized via denormalized_skin. This is a valid approach, especially
for internal code, where you can better control how things are called. It isn't
ideal though, since it requires the caller to do extra work.

2. Skip the denormalization if a skin cluster is already denormalized. This is a
better options since the optimization is transparent to the caller.

Let's go with the second approach. We can implement it by adding a cache inside the
denormalized skin context manager.

_denormalized skins = set() #(1)
class denormalized skin(object) :

"ninTyrng off skin cluster normalization and maintaining

max influrnces."""

def

def

def

_init__ (self, skinCl):

self.skinCl = skinCl
self .maxInfl, self.norm = None, None

__enter_ (self):

if self.skinCl in _denormalized skins: #(2)
return

_denormalized skins.add(self.skinCl) #(3)

self.maxInfl = self.skinCl.maintainMaxInfluences.get ()
self.norm = self.skinCl.setNormalizeWeights (g=True)
self.skinCl.maintainMaxInfluences.set (False)
self.skinCl.setNormalizeWeights (0)
__exit (self, *_):
_denormalized skins.discard(self.skinCl) #(4)
if self.maxInfl is not None: #(5)
self.skinCl .maintainMaxInfluences.set (self.maxInfl)
if self.norm is not None:
self.skinCl.setNormalizeWeights (self.norm)

[131]

Leveraging Context Managers and Decorators in Maya

Let's walk through the code and analyze the changes:

1. The denormalized_skins collection acts as our cache to keep track of what
skin clusters are currently denormalized. A set instance in Python stores
unique values, like the keys of a dictionary. We can simply test if something
is in a set, just like we can check if a key exists in a dictionary. It is a very
fast operation. Prefer to use a set instance to a 1ist instance when storing
unique values and the order of those values does not matter.

2. If the skin cluster is in our cache, it means it is already denormalized, and
we can just return and not bother storing the existing normalization and
max influence state. The context manager becomes a non-operation (in
programmer parlance that's often called a no-op or noop).

3. We add the skin cluster to the cache and denormalize it.

When the context manager exits, we remove the skin cluster from our cache
using the _denormalized_skins.discard method. If the cluster has already
been removed, discard is a no-op.

5. Finally, we check if we need to turn normalization and max influences back
to their original values. If the context manager was a no-op, both of the
original values will be None and the functions will not be called.

Now our swap_influences function can have correct behavior when called in
isolation, but not have performance problems when called thousands of times. We
get the best of both worlds.

This is generally a good thing. And if you find that using the cached context manager
is still not fast enough for your uses, you can always create a swap_influences_
fast function with additional caveats in the docstring, as we have in the following
example. Callers that need more speed can use the simpler, faster function.

def swap_ influence (skinCl, vert, inflA, inflB):
"""For a given vertex,
swaps the weight between two influences."""
with denormalized skin(skinCl) :
swap_influence fast (skinCl, vert, inflA, inflB)

def swap influence fast(skinCl, vert, inflA, inflB):
"""For a given vertex,

[132]

Chapter 4

swaps the weight between two influences.
“skinCl”~ should be denormalized before calling this function.
See “denormalized skin~.

wan
valA = pmc.skinPercent (skinCl, vert, g=True, t=inflA)
valB = pmc.skinPercent (skinCl, vert, g=True, t=inflB)
pmc.skinPercent (skinCl, vert, tv=[inflA, wvalB])
pmc.skinPercent (skinCl, wvert, tv=[inflB, wvalA])

Creating a decorator to record metrics

A popular thing to do in professional studios is to record how long something takes
and how often it happens. This sort of profiling can be useful for tracking things
like program startup time, how long it takes to export meshes, or who is using

that deprecated tool that should have been killed a long time ago. We will build a
decorator to time how long a function takes to execute.

Generally this sort of recording has the following pattern:

1. Geta unique key for a callable item.

2. Record the time it takes to invoke the callable item.

3. Report the time taken to some other system, identifying the callable through
the unique key.

This is perfect for a decorator. We use a decorator instead of a context manager
because the fact that a function is profiled is an aspect of the function itself, and not
something left up to the caller.

The use of the finished decorator will look something like the following;:

@profiling.record duration
def export scene() :
do stuff

We'll tackle each of the three steps —creating a key, recording time, and reporting
results —separately.

[133]

Leveraging Context Managers and Decorators in Maya

Getting a unique key

Begin by creating a file under your development root named profiling.py. First we'll
implement the _getkey function, which will return the unique key for our callable.
You may recall that when we implemented minspect. py to_helpstr backin
Chapter 1, Introspecting Maya, Python, and PyMEL, we wrote some code to check if an
object was a method or function. The _getkey function will return a unique key for
methods and functions, and raise a TypeError for any other type of argument.

import types

def getkey(func):
if isinstance(func, types.FunctionType) :
return '%$s.%s' % (func. module , func. name)
if isinstance (func, types.MethodType) :
return '%$s.%s.%s' % (func. module ,
func.im class. name ,
func. name)

)

raise TypeError('%$s must be a function or method' % func)

We can now use this unique key to identify every function throughout our
entire codebase.

Recording duration

Next we will create our record_duration decorator function. Start by stubbing out
a simple decorator that simply passes everything through.

def record duration (func) :
def inner (*args, **kwargs) :
return func(*args, **kwargs)
return inner

Next, we can hook up the recording of start and end time. Before and after we invoke
func we store the result of time.clock (). Use time.clock when profiling code.

The time.clock function is the preferred way to record how long something takes
in Python. After the function runs, print out how long it took. In the next section, we
will create a way to report the duration.

import time
def record duration (func) :

key = _getkey (func)
def inner (*args, **kwargs) :

[134]

Chapter 4

starttime = time.clock()
result = func(*args, **kwargs)
endtime = time.clock()
duration = endtime - starttime
print '%$s took %ss' % (key, duration)
return result

return inner

Let's see a simple example using the record_duration decorator as it currently is:

>>> @record_duration
def expensive_ func() :
time.sleep(.1)
return 'whew'
>>> result = expensive_ func /()
__main_.expensive_ func took 0.0991245s
>>> result

'whew'

Reporting duration

Now comes the only tricky part: recording the duration. I've used databases,
middleware, web services, and various other mechanisms. We are going to go
very low-tech and simply write to a file in the current directory. In production
environments, you would want something more robust.

To report our data, we'll just open a file, and append a line to the end of it with the
key (function or method name) and current time. Let's create our reporting function.

def _report duration(key, duration):
with open('durations.txt', 'a') as f:
f.write('%s: %s\n' % (key, duration))

The second argument to the open function, 'a', opens the file in append mode so we
keep adding to it. Make sure the call to write includes a newline character (\n) or all
metrics will end up on the same line!

We can easily hook up the _report_duration function in the
record duration function.

def record duration (func) :
key = getkey(func)
def inner (*args, **kwargs) :
starttime = time.clock()

[135]

Leveraging Context Managers and Decorators in Maya

result = func(*args, **kwargs)
endtime = time.clock ()
duration = endtime - starttime

_report duration(key, duration)
return result
return inner

Handling errors

It would be dangerous to not think about errors here. The record_duration
decorator is extra code that is associated with a function, so we need to handle errors
intelligently. Imagine if the file recording metrics weren't writable: a user's program
would be broken, or at least significantly slower, because metrics couldn't be saved.
Clearly this is undesirable.

Writing the report file can fail for any number of reasons. The most common will

be if the file is locked for writing by another process that is recording metrics at the
same time. In this case, we will just print that we have skipped the reporting. This is
non-critical data so dropping a few pieces is not a big deal.

If the writing fails for any other reason, we will just disable the recording of metrics

entirely and print out the entire error. It could slow down a program considerably if
we try and fail to record metrics for every call. We'll make a few important changes

to our code.

import errno #(1)
import traceback #(2)

_reporting enabled = True #(3)

def _report duration(key, duration):
global reporting enabled
if not _reporting enabled: #(4)
return
try:
with open('durations.txt', 'a') as f:
f.write('%s: %s\n' % (key, duration))
except OSError as ex: #(5)
if ex.errno == errno.EACCES: #(6)
print 'durations.txt in use, cannot record.'

[136]

Chapter 4

else:
_reporting enabled = False #(7)
traceback.print exc()
print 'Disabling metrics recording.'

This code introduces a number of new things so let's go through it point by point.

1.

Import the errno module. This module contains many common system error
codes mapped to Python constants. We will use it to figure out what sort of
error we hit when writing to the file.

Import the traceback module. This module is used for printing exception
tracebacks, or all the information about an error.

Store whether reporting is enabled in a variable on the module. We will turn
this off when we hit an unexpected error.

Before we report anything, we check to make sure reporting is still enabled.
If not, we return early. Note the use of Python's global keyword to indicate
that when we assign _reporting_ enabled later on, we want to set the
variable on the module, not create a new variable in the function's scope.

We catch any 0sError that occurs while writing our file. On Windows
machines, this will be a windowsError, which is a subclass of 0OSError.

If the error's errno (error number) equals errno . EACCES (an access error,
perhaps due to a locked file), we print a warning and do nothing else.

If the error is due to anything else, we disable reporting by

setting _reporting_enabled to False. This ensures we won't keep

hitting this error, since future reporting will be a no-op. We also print the
traceback via traceback.print_exc, and then print that we are turning off
metrics recording.

While appending metrics to a text file may be too rudimentary to be of much use
in a studio environment, hopefully this code serves as a useful blueprint for more
advanced versions. For example, if you were using HTTP to post metrics to a web
service, you could use this same pattern of turning the reporting off in the case of
an error.

I hope this simple project shows you how decorators can be used in interesting ways,
and how flexible and powerful Python can be. If this sort of project inspires you,
keep going with it! Sometimes the abilities and expressiveness of a language can be
enough to provoke ideas that less exciting languages would not.

[137]

Leveraging Context Managers and Decorators in Maya

Advanced decorator topics

Let's go over a few pieces of advice concerning decorators that did not fit into
earlier sections.

Defining decorators with arguments

Decorators with arguments are an advanced topic. They can be implemented as
types witha _ call_ method, or as a triple-nested function. For example, the
following two pieces of code behave the same.

def deco_using func(key) :
def deco(func):
def inner(*args, **kwargs):
print 'Hello from', key
return func(*args, **kwargs)
return inner
return _deco

class deco_using cls(object):
def init_ (self, key):
self.key = key
def call_ (self, func):
def inner(*args, **kwargs):
print 'Hello from', self.key
return func(*args, **kwargs)
return inner

Either one would be hooked up as follows. Note that the decorator is called
with arguments.

>>> @deco_using_func ('func deco')
def decorated funcil():
return
>>> decorated funcl ()
Hello from func deco
>>> @deco_using cls('class deco')
def decorated func2():
return
>>> decorated func2 ()
Hello from class deco

[138]

Chapter 4

If you don't understand the code, that's fine. It can be difficult enough to understand
decorators, and decorators with arguments can seem exponentially more complex.
When you're getting started with decorators, avoid creating them with arguments
until you are comfortable. But once you are, there is plenty of power to unleash.

Decorating PyMEL attributes and methods

Something very relevant to Maya is decorating PyMEL. It is also quite difficult,
since so many PyMEL calls are dynamically dispatched. You will need to use the
reassignment pattern of decoration, decorating and replacing methods, as in the
following example:

DagNode.setTranslation = announce (DagNode.setTranslation)

To make things extra difficult, decorating methods is more complex than decorating
functions. You'll need to read up on it if you run into trouble. My suggestion is to
avoid decorating PyMEL entirely.

Stacking decorators

Decorators can be stacked. Here is some demonstration code. Note how func is
decorated by both the deco1 and deco2 decorator functions.

>>> def decol (func) :
def inner():
print 'decol!
return func ()
return inner
>>> def deco2 (func) :
def inner():
print 'deco2!
return func ()
return inner
>>> @decol
. @deco2
. def func():
print 'inside func'
>>> func ()
decol
deco2
inside func

[139]

Leveraging Context Managers and Decorators in Maya

The decorator stack is applied from the bottom up and executed from the top down.
The non-decorator version of the preceding code should make this behavior more
clear. The decorators are applied right-to-left, and called left-to-right. The function
returned by decoz2 is passed to deco1, and the function returned by deco1 is what
we call when func2 () is invoked.

>>> def func2():

print 'inside func2'
>>> func2 = decol (deco2 (func2))
>>> func2 ()
decol
deco2
inside func?2

Stacking decorators is not commonly used, but it is useful to know it exists in case
you see it or have a use case for it.

Using Python's decorator library

Because decorators are so convenient and composable, it's easy to reuse them.

The Python Wiki has a page full of decorator recipes that you may find useful.

The Python Decorator Library is located at https://wiki.python.org/moin/
PythonDecoratorLibrary. There are also many decorator libraries available on the
Python Package Index. Check out Chapter 9, Becoming a Part of the Python Community,
for more information about the Python Package Index.

Doing decorators the right way

Before finishing this chapter, it behooves me to point out that the techniques presented
here for creating decorators are perhaps overly simplistic for external code. Decorating
a function in the way presented destroys much of the function's metadata, such as its
name and argument information. To do decorators the right way, refer to Graham
Dumpleton's wrapt library, available from https://pypi.python.org/pypi/wrapt
He also has a wonderful series of blog posts about decorators, which you can find at
http://blog.dscpl.com.au/search/label /decorators

That said, the simple techniques in this chapter are often good enough.

[140]

https://wiki.python.org/moin/PythonDecoratorLibrary
https://wiki.python.org/moin/PythonDecoratorLibrary
https://pypi.python.org/pypi/wrapt
 http://blog.dscpl.com.au/search/label/decorators
 http://blog.dscpl.com.au/search/label/decorators

Chapter 4

Summary

In this chapter, we saw how Python decorators and context managers invert

the subroutine and allow us to factor out common setup and teardown code.

We learned how both of these techniques work, and when to apply them. We
implemented several context managers that make programming Python in Maya
a better experience. We closed by exploring some potential uses for decorators,
and advanced topics for future investigation.

Context managers and decorators are two powerful features that will come up
again and again throughout this book and as you program Python. It is well

worth understanding what they have to offer, and we've only just scratched the
surface in this chapter. As convenient as they are for mapping Maya's problems
onto Pythonic idioms, they are just as useful when designing systems from scratch.
Web frameworks in particular have been able to use decorators for amazing things.

In the next chapter we will change topics and look at creating graphical user
interfaces for Maya. We will keep building on what we've learned so far to make
the process and code beautiful, simple, and Pythonic.

[141]

Building Graphical User
Interfaces for Maya

If you have been a bit confused about building graphical user interfaces (GUISs) in
Maya, you are not alone. What's the difference between PySide and PyQt? Do you
build GUIs by hand or with a WYSIWYG designer application? What about using
Maya's Ul commands? The GUI landscape in Maya has been rapidly changing for
the past few years. Fortunately it seems like it is calming down, and from the turmoil
we can establish best (and worst) practices for the future.

In this chapter, we will start by gaining a basic understanding of PySide's concepts,
including bindings, widgets, layouts, windows, and signals. We will also learn
about PySide's relationship to Qt and PyQt. Then, we will lay down some principles
for building GUISs that will allow them to be decoupled from Maya and faster to
develop. We will learn how to install PySide and PyQt, and write code that will run
with either framework.

After that, we will create a GUI that runs outside of Maya, and see the benefits that
developing code this way can bring. Then we will learn how to integrate the GUI
with Maya so that they can interact with each other. We will wrap up the chapter by
learning how to use PySide with Maya's menu and shelf systems.

Introducing Qt, PyQt, and PySide

Let's start by going over some terminology and history to clear up the confusion
surrounding the Maya user interface ecosystem.

There is a C++ framework called Qt. While the Qt user interface classes are the most
widely known, Qt is actually an entire application framework. For this book, we'll
limit ourselves to the user interface classes in the QtGui namespace, with occasional
uses of the gt Core namespace which contains some base functionality.

Building Graphical User Interfaces for Maya

By the way, Qt is officially pronounced cute, not cue-tee. However, I doubt anyone
will call you out for using the latter, and it is how most people pronounce it anyway.

Maya began using Qt in the 2011 version. Before that, it was using a proprietary
system for its UI. The change was mostly under the hood, and Maya's scripting
interface for working with UI did not change. However, it did allow developers to
create Qt extensions that are usable in Maya.

We are able to use Qt from Python by using bindings for C++ classes. A binding
allows us to call C++ objects from Python. There is a Qt binding called PyQt that
allows Qt classes to be called from Python. A few years ago, Qt and PyQt were
involved in a licensing drama. The gist of it is that Qt itself switched its Open Source
license to the less restrictive LGPL, while the company that controls PyQt refused to
change its license from GPL.

As an outcome of this controversy, PySide was created as an LGPL alternative to
PyQt. When Autodesk announced that Maya 2014 would ship with PySide available,
a number of lawyers suddenly had less work and in many development circles there
was much rejoicing.

PySide and PyQt are in most ways identical. Where they are different, we will
support them both through the gtshim. py file included with this book. See the
section Supporting PySide and PyQt later in this chapter. When I use the term PySide
for the rest of this chapter, I will usually mean your current Qt bindings, whether
they are PySide or PyQt.

With that history lesson out of the way, let's go over some key concepts for working
with PySide. The information in the following sections apply to both general PySide
use and when writing Maya GUIs. We'll use these concepts to build several GUIs
later in this chapter.

Introducing Qt widgets

In Qt, a widget is a user interface control. A slider is a widget (0slider), a textbox is
a widget (QTextEdit), and even an empty widget is a widget (QWidget). A complete
interface is usually composed of several widgets. Every widget has a parent widget,
or None in the case of top-level windows.

[144]

Chapter 5

Qt uses type hierarchies to grow functionality of widgets. For example, a checkbox
widget (the gCheckBox class) has basic button functionality because it inherits

from the gabstractButton class. The QabstractButton class has basic widget
functionality because it inherits from the gwidget class. A button (the QPushButton
class) is also an QabstractButton (which is, as just mentioned, a Qwidget). This

is very similar to the way PyMEL uses type hierarchies, as we saw in Chapter 1,
Introspecting Maya, Python, and PyMEL. While it is not vital to understand object-
oriented programming to begin working with Qt, it will quickly become more
important as you build your own GUIs and custom widgets.

Introducing Qt layouts

Every widget has a layout, which is an instance of the QLayout class. An interface
with three buttons stacked on top of each other would be some sort of container
widget that has a QvBoxLayout layout, and the three buttons are part of that layout.

It is important to note that the concept of parent and layout are distinct. Widget

A can be part of the layout of Widget B without being a child of Widget B. Many
GUI frameworks, including Maya's Ul commands, combine the two concepts into
one. We'll rarely get a case when a widget's parent is not equal to the owner of the
layout it is a part of, but we should keep the distinction in mind. Simply parenting a
widget does not add it to the parent's layout; they are two distinct concepts. Getting
comfortable with this design is important for working with Qt effectively.

Understanding Qt main windows and sorting

Every Qt GUI application has at least one top-level window. In the case of Maya, that
is the Maya window itself. We want our tool windows to sort just like Maya's own
windows, such as the Script Editor. They never disappear behind the main window.
To do this, we will use the main window as the parent of tool windows. If a tool
window has no parent, it will sort as if it is a window from another process with no
relation to Maya.

While technically a window can be made from any widget without a parent, one
usually uses an instance of QMainWindow, or QDialog for dialogs. The main Maya
window itself is a QMainWindow subclass. There is also the gMessageBox class for
displaying customizable message boxes. By the end of this chapter, you should
have the skills to use the QMessageBox class as a much more powerful alternative to
Maya's message box commands like promptDialog and confirmbialog.

[145]

Building Graphical User Interfaces for Maya

Introducing Qt signals

In Qt, a signal is an event that can be listened to, and listeners are notified when
the event happens. A listener connects to a signal with a callback. A callback is just
a function that is invoked when the signal emits. A listener can stop listening by
disconnecting. It is very important to become familiar with these terms, as we will
use them extensively once we start programming with Qt signals.

This simple concept ends up being incredibly powerful. It allows us to have all
Maya code outside of the user interface. The GUI and Maya functionalities become
completely self-contained, meaning each can be developed and tested in isolation.
We'll see later how this simplifies GUI development.

Establishing rules for crafting a GUI

There are several ways to build GUIs in Maya. In this book, we will take the
approach described in this section. While this is not the only approach one can take,
I certainly think it is the most productive in both the short and long term. Once you
are able to execute on the concepts in this chapter, you will want to use them for

all your user interfaces. In my experience, the approach presented here has proved
valuable time and time again.

Prefer pure PySide GUIs where possible

Build your GUIs in pure Python, runnable completely outside of Maya. Then from
inside of Maya, connect to signals that are emitted from your GUI. Likewise, the GUI
can connect through an intermediary to signals that are emitted from Maya. By doing
this, your GUIs will be more abstract (they will not contain Maya code) and much
faster to develop (you do not need to build them in Maya or run Maya to test them).

There are exceptions to this rule that are covered in the second rule.

Use command-style Ul building where

necessary

Though Qt's widget library is rich, applications like Maya often have higher-level
widgets that are composites of several simpler widgets. Maya menu and shelf
systems are examples of this. Consider the options box associated with Maya menu
items, which is not part of normal Qt menu items.

[146]

Chapter 5

Rather than reinvent the wheel, we will use Maya's commands (through PyMEL,
of course) to work with Maya's menus and shelves. We can then interact with their
underlying Qt objects. The sections Working with menus and Working with Maya
shelves demonstrate this approach.

We can also use commands to get the Qt objects underlying well-known Maya widgets
like the Script Editor or Outliner if we want to customize or interact with them.

Avoid the use of .ui files

When Maya first supported Qt GUIs, scripters everywhere rejoiced. They

could finally use the Qt Designer, which is a What-You-See-Is-What-You-Get
(WYSIWYG) program for building GUIs. You visually build your interface, save its
definition into a . ui file, and dynamically load the file in Python to create the GUI at
runtime. In a future version of the same universe, however, everyone who needed to
work with these auto-generated GUIs was lamenting their fate.

WYSIWYG-created interfaces are generally poorly designed from a technical

and aesthetic standpoint. They are difficult to extend and maintain because the
auto-generated code is a bloated mess of spaghetti. Objects are poorly named and
organized, and filled with useless attributes. In some languages and frameworks,
such as WinForms and Windows Presentation Foundation for the .NET framework,
WYSIWYG designers are a valid to way to combat overly verbose syntax, clunky
APIs, or slow iteration speed. With Python and Qt, there is absolutely no need.

The Qt framework is elegant and Python does not require any substantial boilerplate.
With a minimal amount of training, you can build better GUIs cleaner and faster
with code than with a WYSIWYG designer.

Feel free to use the Qt Designer for getting a better grip on how Qt works, such as
what widgets are available and how different layout values behave. It is also useful
to create mockups to show users. But under no circumstances should it be used for
production code.

Installing PySide

To run the code in this chapter, you will need PySide or PyQt available in Maya.

The instructions below focus on PySide, since it is the framework of choice. If you are
using PyQt at this point, you probably know what you're doing and do not need the
instructions in this section.

[147]

Building Graphical User Interfaces for Maya

If you are using Maya 2014 or above, you are all set. PySide should already
be available.

If you are using Maya 2010 or below, you cannot use Qt.

For all other Maya versions, you can follow the instructions in Chapter 9, Becoming a
Part of the Python Community. For Maya 2011, 2012, or 2013 on OS X, or Maya 2011 or
2012 on Windows, you can use a binary distribution from https://pypi.python.
org/pypi/Pyside. If you are using Maya 2013 on Windows, you can download
compatible binaries from http://www.robg3d.com/maya-windows-binaries/.

Supporting PySide and PyQt

For the purposes of this book, there are two differences between PySide and PyQt.
We will use the gtshim. py file to swap between the two depending on what is
available. When the module is imported, it will choose between PySide and PyQt
implementations, depending on what is available.

The gtshim.py module contains four attributes:

* The otCore and QtGui namespaces, pulled from the imported
implementation.

* The signal class, which just aliases the Pyside.QtCore.Signal or PyQt4.
QtCore.pyqtSignal class.

* The wrapinstance function which takes a pointer to a Qt object and returns
the Qt object it points to. A pointer here is a long integer that refers to the
memory location of the underlying Qt object. There is a significant difference
between the implementation of wrapinstance between PySide and PyQt due
to how their supporting libraries (shiboken and sip, respectively) work.

I'd suggest using a shim like gt shim to allow easy switching between
implementations, and also because the provided shim improves on the default
wrapinstance function interface.

The contents of gt shim.py follow. I've removed the comments, and we will not go into
any details, since the code uses advanced topics that aren't relevant to this chapter.

try:
from PySide import QtCore, QtGui
import shiboken
Signal = QtCore.Signal

[148]

https://pypi.python.org/pypi/PySide
https://pypi.python.org/pypi/PySide
http://www.robg3d.com/maya-windows-binaries/

Chapter 5

def getcls(name) :
result = getattr (QtGui, name, None)
if result is None:
result = getattr (QtCore, name, None)
return result
def wrapinstance (ptr) :
"mrConverts a pointer (int or long) into the concrete
PyQt/PySide object it represents."""
ptr = long(ptr)
gobj = shiboken.wrapInstance (ptr, QtCore.QObject)
metaobj = gobj.metaObject ()
realcls = None
while realcls is None:
realcls = getcls(metaobj.className ())
metaobj = metaobj.superClass ()
return shiboken.wrapInstance (ptr, realcls)
except ImportError:
from PyQt4 import QtCore, QtGui
Signal = QtCore.pygtSignal
import sip
def wrapinstance (ptr) :
return sip.wrapinstance (long(ptr), QtCore.QObject)

Creating the hierarchy converter GUI

In this section we'll create a PySide user interface for the character creator/hierarchy
converter we worked on in Chapter 2, Writing Composable Code. The GUI will respond
to the user changing selection, and when the user interacts with the GUI, it will
update the Maya scene. This project will teach us the fundamental concepts that
allow the decoupling of Maya and PySide components. This decoupling allows an
ever-more-complex set of interactions while still keeping the code maintainable.

Creating the window

Our GUI will be a Python script like any other. Let's make a file
hierarchyconvertergui.pinlOurckﬁmﬂopnnentrootC:\mayapybook\pylib.()pen
it up in your IDE and write:

from gtshim import QtGui, QtCore, Signal

[149]

Building Graphical User Interfaces for Maya

This will import the two main PySide modules into your file, allowing you to use
GUI classes (through otGui) and core library classes (through otcore), as well as the
Signal class. Most of the time you will only use QtGui classes, but in this example
we'll need a few things off of the gt Ccore module, as well as signals.

The next step is to write the code that creates our actual GUI Note that there

are many ways this can be done. The function-based approach here is only one
technique. See Considering alternative implementations later in this chapter for other
approaches. The following code will create a new Qt window:

def create window() :
win = QtGui.QMainWindow ()

return win

Finally, we need to run the create_window function and then show the window.
These five lines of code are actually quite dense and we'll go over the concepts
behind them in the next few sections.

if name == ' main ':
app = QtGui.QApplication([])
win = create window ()
win.show ()
app.exec_ ()

Running a Python file as a script

Theif _ name_ == '__main__ ' line in the preceding code is a Python idiom that
means if this is the script being run. The code nested under that expression will not
execute if the module is imported. It will only execute if the module is run directly,
such as from the command line.

To test this out, let's make a file ¢: \mayapybook\pylib\scratch.py that you can
delete after this section. Inside, write:

print 'Hello, you are in', _ name
if name == ' main ':

print 'Running main'
print 'Finishing'

Use the mayapy interpreter to run the file from the command line. Calling mayapy
with a path to the Python file will run it as a script.

> mayapy C:\mayapybook\pylib\scratch.py

[150]

Chapter 5

You should see the following output:

Hello, you are in main

Running main

Finishing

Now, again from the command line, we'll import this module instead of running it.

Calling mayapy without any arguments will open up an interactive prompt where we
can import the file and see what it prints.

> mayapy
>>> import scratch

Hello, you are in scratch
Finishing

We can see that the __name__ variable is set to the string " main " when a file is
run as a script, and the name of the file when it is imported.

Introducing the QApplication class

That brings us to the line app = QtGui.QApplication([]). What does it mean?

Every program that uses Qt widgets has a single instance of the QtGui .
QApplication class. In fact this object must be created before any widget is created.
So the pattern we see in the hierarchyconvertergui main block is:

Ensure the application exists.

Create the gMainWindow instance.

Show the window.

Ll s

Call exec_ on the gApplication which will pump the event loop until all
windows are closed. The program will then exit. We look at the event loop in
the next section.

Understanding the event loop

We usually think of code executing sequentially: there is a start and an end. With
interactive programs such as GUIs, however, there must be an event loop (also called
a message pump) that polls for input and events. The exec_ () method we used
previously is a loop that just pumps messages. The call to exec_ will block until the
event loop is told to not pump any more messages. Even though this call is blocking,
Python code still executes in response to events like button clicks.

[151]

Building Graphical User Interfaces for Maya

The exec_ method can be thought of like the following.

def exec ():
while should keep going(): #(1)
message = get next message ()
process message (message) #(3)

#(2)

Let's go over the preceding pseudocode.

1. Inside exec_is a while loop. On each cycle, it checks whether it should
still be looping. For example, it may stop looping because it received a quit
message. Once the loop is broken, the exec_ method returns.

2. The get_next_message function is a blocking call that checks a queue for a
message. A message can be something like a button being clicked, a window
asking to be redrawn, or any number of things.

3. The message is processed. If there is Python code set up to run when a button
is clicked, the process_message function would eventually run that code. In
essence, this is what allows the program execution to look blocked in the call
to exec_ (), but still run code in response to user interaction.

While you can do most of your GUI programming without understanding how the
event loop works, I find it's useful to have some basic understanding. This terribly
simplified information is applicable to all GUI frameworks, not just Qt.

Running your GUI

Now that this most basic of code is written, we can run our GUI. Don't bother
opening up Maya! We're going to use mayapy to run our code instead. A standard
Python 2.6 or 2.7 install with PySide would also work. To test our GUI we run
mayapy with our Python file path from the command line like so:

> mayapy.exe C:\mayapybook\pylib\hierarchyconvertergui.py

You should see a window pop up onscreen, but you can't do anything with it yet.
When you close it, the Python process should exit.

Congratulations! You've created a GUI purely with PySide.

[152]

Chapter 5

Designing and building your GUI

Now that the boilerplate is out of the way and you have a general understanding of
how things work, we can do the fun (or excruciating, depending on your interests)
work of actual GUI design and programming. I always suggest starting with a rough
sketch of how the finished product should look. I usually do these with pen and
paper, but you can use an image editor, WYSIWYG designer, or GUI mockup tool.
Just don't get bogged down by the technology. Simpler is better.

The following is the mockup I created for the hierarchy converter tool.

Prefix: Convert

2 items selected

The basic elements of the finished tool are apparent in the sketch:

* Alabeled textbox to enter the prefix for the new joints.
* A button to convert the hierarchy.

* A status bar to report the currently selected items.

We'll start with the textbox since it is the most straightforward and will allow us to
introduce several new Qt concepts.

Defining control, container, and window
widgets

Before we create our textbox, we need a place to put it. There are three basic
categories of widgets in Qt:

* Controls, such as textboxes, buttons, spinners, and labels. Basically, controls
are the actual interactive widgets. Generally these are the most granular
widgets, and they usually do not have children.

* Containers, which hold controls or other containers. For example, a scroll
area can hold many buttons, as well as another container which itself
contains a text field. Importantly, it is usually only containers which need
to worry about layout. A container's layout must specify whether its child
widgets are laid out top to bottom, left to right, or whatever is appropriate.

[153]

Building Graphical User Interfaces for Maya

Windows, which have many special features, such as menu bars and status
bars. They have a single widget, almost always a container, which is called its
central widget. Windows do not worry about their layout. They delegate it to
their central widget.

Note that these categories are my terms as I'm not aware of any official terminology.
I've tried to be precise with vocabulary here because it can otherwise get
overwhelming. Keeping a clear distinction between these categories and using
widgets as intended will make your GUI code understandable and usable.

In the following code, we create one of each category in order to add our textbox to
the window:

def create window() :

window = QtGui.QMainWindow () # (1)
container = QtGui.QWidget (window)
textbox = QtGui.QLineEdit (container)

layout = QtGui.QHBoxLayout (container) #(2)
container.setLayout (layout)

layout .addWidget (textbox) #(3)
window.setCentralWidget (container) # (4)

return window

Let's walk through the preceding code.

1.

Create three widgets: a window (the gMainWindow), a container (the
Qwidget), and a control (the QLineEdit). The parent of the control is

the container, the parent of the container is the window, and the window
has no parent.

Create one layout. It belongs to the container.
The textbox is added to the container's layout.

Finally, set the container as the window's central widget.

Many of these things could happen in a different order. Some people put the layout
code after all widgets are created, as we do in the preceding example, and some
interleave it with widget creation. It doesn't really matter. Use the style that seems
clearest to you.

[154]

Chapter 5

If you run mayapy with the hierarchyconvertergui.py file path, a window similar
to the one in the following image will appear. The window will have a textbox that

we can type in.

Elmayapy =] B
|

Adding the rest of the widgets

Let's add the rest of our widgets. We follow the same pattern we have already used
for the textbox. We also call window. setWindowTitle to give our GUI a title, instead

of the name of the process (mayapy in the preceding figure).

def create window() :
window = QtGui.QMainWindow ()
window.setWindowTitle ('Hierarchy Converter')

container = QtGui.QWidget (window)

label = QtGui.QLabel('Prefix:', container)
textbox = QtGui.QLineEdit (container)

button = QtGui.QPushButton('Convert', container)

layout = QtGui.QHBoxLayout (container)

container.setLayout (layout)

Add them to the layout, first widget added is left-most
layout.addwWwidget (label)

layout.addWidget (textbox)

layout.addwidget (button)

window.setCentralWidget (container)

return window

Run mayapy with the path to hierarchyconvertergui.py again. The window that

appears should look like the following image. It is close to the initial sketch:

] Hierarchy Converter EI@
Prefix: | Convert

Now that our controls are in place, let's add some interactivity into our user interface.

[155]

Building Graphical User Interfaces for Maya

Hooking up the application to be effected
by the GUI

We want to make our GUI interactive so that when we press the Convert button,
the hierarchies of the selected objects in Maya are converted to joints. In traditional
GUI programming, you may put the call to the charcreator module directly into
the button's click handler. This technique, however, would make the GUI depend
on Maya, which we have agreed not to do. It may seem simpler to take a shortcut,
but the long term cost of tying your GUI to Maya will quickly outweigh any
short-term benefits.

Instead, we will create a signal on our window that will be emitted when Convert is
pressed. For testing, we can connect a callback that will print some text. Later, when
we hook up the GUI in Maya, we will connect the charcreator call that will convert
selected hierarchies.

1
‘Q See the Introducing Qt signals section earlier in this chapter if you need a

refresher on signals.

We need to create custom classes to work with signals. Because of some deep PySide
magic, you cannot just assign a Signal instance to an object. For example, writing
window.convertClicked = gtshim.Signal () would not result in a working
signal. You must define a subclass of a Qt class. Fortunately, you can get by if you
just copy what's provided here until you get more comfortable creating your own
types. You can use this same pattern for your own projects.

The highlighting in the following code demonstrates how to use a signal to allow
the caller to define what happens when Convert is pressed, rather than hard coding
the reaction.

class ConverterWindow (QtGui.QMainWindow) : # (1)
convertClicked = Signal(str)

def create window() :
window = ConverterWindow ()
window.setWindowTitle ('Hierarchy Converter')

container = QtGui.QWidget (window)

label = QtGui.QLabel ('Prefix:', container)
textbox = QtGui.QLineEdit (container)

button = QtGui.QPushButton('Convert', container)

[156]

Chapter 5

def onclick(): #(2)
window.convertClicked.emit (textbox.text())
button.clicked.connect (onclick) #(3)

layout = QtGui.QHBoxLayout (container)
container.setLayout (layout)

layout .addWidget (label)

layout .addWidget (textbox)

layout .addWidget (button)
window.setCentralWidget (container)

return window

if name == ' main ':

def onconvert (prefix): #(4)
print 'Convert clicked! Prefix:', prefix

app = QtGui.QApplication([])
win = create window ()
win.convertClicked.connect (onconvert) #(5)
win.show ()
app.exec_ ()

Let's go over the changes in more detail. This pattern of using signals is essential to
successful PySide GUI programming.

1. Define the converterWindow class, which is a gMainwindow subclass.
Give it an attribute named convertClicked that is an instance of gt shim.
Signal. We pass the str type into the Signal initialization, which does
two things. First, it tells Qt that the signal must be emitted with a single
argument. Second, it indicates to the programmer that the argument to emit
should be a string.

2. Create a nested function onclick that emits the window's convertcClicked
signal with the contents of the textbox. Recall that the convertclicked
signal emits a single string argument (see point 1).

3. Connect the Convert button's c1icked signal to the onclick callback. When
the button is pressed, the clicked signal will be emitted, and onclick will
be invoked.

4. In our testing code, create a nested callback function onconvert. The function
will print out the contents of the textbox, which the convertclicked signal
is emitted with (see point 2).

[157]

Building Graphical User Interfaces for Maya

5. Also in our testing code, connect the window's convertclicked signal
to call the onconvert callback. When the Convert button is pressed, the
convertClicked signal will be emitted, which will invoke the onconvert
function (see points 2 and 3).

Run mayapy with the hierarchyconvertergui.py file path and press the Convert
button. You should see the contents of the textbox printed to the console. The GUI
behavior and application behavior have been successfully decoupled.
Instead of creating the convertClicked signal, you may be tempted -
to have the testing code connect to the button's c1icked signal and
query the contents of the textbox. The approach we took in this section is
M superior. It presents a much cleaner set of contracts to callers. A caller can
Q connect to the highly specific ConverterWindow.convertClicked
signal on the top-level window, rather than having to connect to the
generic QPushButton. clicked signal on the button instance. This
sort of abstraction is a key to writing decoupled GUIs that are easy to
e maintain, and one place WYSIWYG tools can fall short. -

Hooking up the GUI to be effected by
the application

In the last section, the application (test code) connected to signals on the GUI, so
when the GUI changed, the application responded. We will now use a similar
technique so that when the application state changes, the GUI is updated. We will
eventually want to monitor Maya for selection changes. We'll abstract this behavior
so we can develop and test our GUI without requiring Maya.

The abstraction will be handled by a controller, which will be responsible for alerting
the GUI itself (the view) that changes have occurred in the Maya scene (the model).
This is a version of the model-view-controller (MVC) pattern of implementing user
interfaces. The specifics of MVC are less important than the idea that there is an
abstraction between Maya and our GUI that is mediated by a controller.

The following code creates a very simple controller with a single signal that will be
emitted when Maya's selection changes. We will fake a selection change by emitting
the signal ourselves when developing outside of Maya. The controller is a Python
class that has a single signal attribute. The controller inherits from the otcore.
QObject class so it can define a Signal attribute.

class HierarchyConverterController (QtCore.QObject) : #(1)
selectionChanged = Signal(list)

[158]

Chapter 5

class ConverterWindow (QtGui.QMainWindow) :
convertClicked = Signal (str)

def create window(controller): #(2)
window = ConverterWindow ()
window.setWindowTitle ('Hierarchy Converter')
statusbar = window.statusBar() (3)

container = QtGui.QWidget (window)

label = QtGui.QLabel ('Prefix:', container)
textbox = QtGui.QLineEdit (container)

button = QtGui.QPushButton ('Convert', container)

def onclick():
window.convertClicked.emit (textbox.text ())
button.clicked.connect (onclick)

def update statusbar (newsel): #(4)
if not newsel:
txt = 'Nothing selected.'
elif len(newsel) ==
txt = '%s selected.' % newsell[0]
else:
txt = '%s objects selected.' % len(newsel)
statusbar.showMessage (txt)
controller.selectionChanged.connect (update statusbar) #(5)

layout = QtGui.QHBoxLayout (container)
container.setLayout (layout)

layout .addWidget (label)

layout .addWidget (textbox)

layout .addWidget (button)
window.setCentralWidget (container)

return window
Let's walk through the highlighted changes in more detail:

1. Create the HierarchyConverterController class definition with a Signal
attribute named selectionChanged. The signal will be emitted with a single
list argument.

2. Add a controller parameter to the create window function. The caller is
responsible for creating a controller and passing it into this function.

[159]

Building Graphical User Interfaces for Maya

3.

Call the window. statusBar () method to create the status bar that will
display how many items are selected. The status bar will be empty initially.

The update_statusbar callback function will update the status bar text to
tell the user what is selected.

Connect the update statusbar callback to the controller's
selectionChanged signal so the callback will be invoked when the selection
is changed.

Now we need to adjust our test application code (the code under if _ name_ ==
' main_ ') to create a controller and simulate some events.

Simulating application events

In order to test our GUI outside of Maya, we need to simulate a selection changing.
As a convenience, we will fake the selection change whenever the Convert button is
pressed. You can also use a timer or background thread for this. Let's update our test
application code to the following;:

def pytest(): #(1)

import random #(2)

controller = HierarchyConverterController() #(3)
def nextsel(): #(4)
return random.choice ([
1,
['single'],
['single', 'double']
1)

def onconvert (prefix) :
print 'Convert clicked! Prefix:', prefix
controller.selectionChanged.emit (nextsel()) #(5)

app = QtGui.QApplication([])

win = create window(controller) #(6)
win.convertClicked.connect (onconvert)
win.show ()

app.exec_ ()

if name == ' main ':

_pytest() #(1)

[160]

Chapter 5

The changes to support simulating the selection are as follows:

Ll

6.

Move the test code into a _pytest function as a convenience.
Import the random module.
Create an instance of the controller class.

Define the nextsel function. The function will return a list that will act as
our fake selection.

Inside the already-existing onconvert callback, emit the controller's
selectionChanged signal to simulate the selection change.

Pass the controller into the window creation function.

Run mayapy with the hierarchyconvertergui.py file path from the command line.
Each time you press Convert, not only will text be printed to the console like before,
but the status bar text will update depending on what the fake selection is.

Considering alternative implementations

I should point out that this implementation is only one potential way of separating
Maya from your GUI code. In particular, we made the following choices, and each of
them has some alternatives:

Functions versus classes: I used functions for building the GUI because I
didn't want to introduce any heavy use of custom classes and object-oriented
programming. In production code, however, I'd almost always use classes.
Functions are in some ways cleaner, but classes allow you to override
functionality easily. It is worth writing all but the most trivial projects with
classes for GUI code. To see an example of this alternative strategy, consult
basically any PySide programming tutorial.

Specific versus general controller: In our example, we created a custom
HierarchyConverterController with a selectionChanged Signal for

this particular project. This specific controller has the benefit that as the
interactions between the GUI and Maya get more complex, the interface stays
clear because it is in one place (the controller). However, because creating
signals for Maya events is so common, you may want to create a general
Maya controller class that can be passed into your user interfaces. With

the specific controller approach, you would need to hook Maya's selection
changed callback into each controller. With a general controller, you would
only need to hook up Maya's selection changed callback once. Try both and
choose. I prefer the specific approach since controllers created by the general
approach can easily get hijacked by less rigorous programmers and bloated
with non-general code.

[161]

Building Graphical User Interfaces for Maya

* Complete test setup: I am sure that some people will find the amount of
testing code in the _pytest function superfluous, and argue that it is easier
to iterate in Maya than build test setups. There's a simple answer here: do not
take shortcuts, especially if you are not familiar with this technique. There is
much written on the topic of software lifecycles, testing, and maintenance.
Far too much to lay out a complete and compelling argument here. If you are
an experienced programmer and normally practice Test Driven Development
and you just need to write a one-off GUI, go ahead and ignore this advice
(not that you need my permission!). However, if you are struggling
with some of the concepts we've gone over, I would implore you to get
comfortable with them instead of falling back to what you already know.

The biggest benefit of having decoupled code and a complete test harness is that
anyone can run our file and see how the GUI is supposed to work. There is no mental
or material burden of using Maya. There is no test scene that needs to be loaded.
There are no restrictions on the development tools that can be used. I've seen veteran
technical artists learn the techniques in this chapter and experience a doubling or
tripling of productivity. In the end, you will be able to do more interesting tools and
features at a higher quality in a shorter time.

Integrating the tool GUI with Maya

It's finally time to hook together Maya and the hierarchy converter tool GUL
This will consist of a few steps. First, we need to get the GUI to simply appear
and behave properly with the Maya window. Then, we must get Maya to emit
the selectionChanged signal on the controller when Maya's selection changes.
Finally, we hook up Maya to respond to the convertclicked signal on our GUI
and perform the actual hierarchy conversion.

Opening the tool GUI from Maya

In this section, we will set up our GUI to open from a Maya shelf button. Let's start
by creating a new Python file which will hold the Maya-specific code which will glue
Maya to the controller. Go ahead and create a hierarchyconvertermaya.py file in
your development root with the following text:

import hierarchyconvertergui as hierconvgui
_window = None

def show() :
global _window

[162]

Chapter 5

if window is None:
cont = hierconvgui.HierarchyConverterController ()
_window = hierconvgui.create window (cont)
_window. show ()

The preceding code creates new HierarchyConverterController and
ConverterWindow instances only the first time the hierarchyconvertermaya.show
function is called. The setup and creation of the GUI should only be done once. The
function will be called repeatedly (it is about to be hooked up to a shelf button), but
we only want to create one instance of the controller and window. Subsequent calls
to show will just bring the existing window to the foreground.

Note that unlike the tester function, we don't need to worry about any oapplication
stuff. That's already handled by Maya. If you need access to the Qapplication
instance Maya creates, you can use the QApplication.instance () method.

The next step is to create a shelf button that can invoke the
hierarchyconvertermaya.show () function when it is pressed. In Maya's script
editor, type the following:

import hierarchyconvertermaya
hierarchyconvertermaya. show ()

Highlight this text and middle-click drag it to the shelf to automatically create a
shelf button. Press this button, and the GUI should appear. You'll notice that the
appearance of the window is different than it was in pure Python. It now matches
Maya's dark style. I will warn you, though, that occasionally what worked fine in a
standard Python process will look broken in Maya. This is common when you use
certain Unicode characters or hard-coded colors.

Now, make sure the hierarchy converter tool window is in front of the main Maya
window. Then, click anywhere in the Maya window. The tool window has probably
moved behind the main Maya window. In the next two sections, we will make the
tool window behave like normal Maya child windows and stay on top of the main
Maya window.

Getting the main Maya window as a
QMainWindow

A Qt window, like other widgets, can have a parent. Child windows will never
be behind their parent. Windows without parents will compete, and the window
with focus will be on top, just like how your OS treats windows from different
applications. To fix the sorting issue, we need to make our hierarchy converter
window a child of the main Maya window.

[163]

Building Graphical User Interfaces for Maya

We're going to write a utility function that returns the gMainwindow instance that
represents Maya's main window. Open C: \mayapybook\pylib\mayautils.py and
put the following code inside of it.

from gtshim import wrapinstance
import maya.OpenMayaUI as OpenMayaUI

def get maya window () :
""r"Return the QMainWindow for the main Maya window."""

winptr = OpenMayaUI.MQtUtil.mainWindow ()
if winptr is None:

raise RuntimeError ('No Maya window found.')
window = wrapinstance (winptr)
assert isinstance (window, QtGui.QMainWindow)
return window

First, we use the maya . OpenMayaUI.MQtUt1il class to get the pointer to the main
Maya window. We raise a RuntimeError if the pointer is None, which would happen
if no window exists. I use an exception in this function because I feel it should never
be called if there is no Maya GUI. We then return our pointer, wrapped/converted to
a true Qt object by calling the gt shim.wrapinstance function. Before we return the
QMainwWindow instance, we assert that our result is the expected type.

Making a Qt window the child of Maya's
window

With the Qt object representing Maya's main window, we can fix our sorting issue.
Open up hierarchyconvertergui.py and change the definition of create_
window so that it takes in an optional parent and passes it to the creation of the
ConverterWindow instance. The following is the updated definition and first line of
the create window function.

def create_window (controller, parent=None) :
window = ConverterWindow (parent)

#

If the parent argument is None, we will get the same behavior we have been getting,
so our test environment does not change at all. If parent is a window, our sorting
problems will be fixed.

[164]

Chapter 5

Let's verify our solution by opening hierarchyconvertermaya.py and changing the
two highlighted lines:

import hierarchyconvertergui as hierconvgui
import mayautils

_window = None

def show() :
global _window
if _window is None:
cont = hierconvgui.HierarchyConverterController ()
parent = mayautils.get maya window ()
_window = hierconvgui.create window(cont, parent)
_window. show ()

You will need to reload your changes or restart Maya. Then click the shelf button to
see the fixed sorting behavior.

Using Python's reload function with GUIs

In Chapter 1, Introspecting Maya, Python, and PyMEL, we looked at Python's built-in
reload function. While I discourage the use of reload most of the time, for GUI
programming it is indispensable. Maya has a significant startup time, and restarting
Maya for every change is simply not fast enough.

When I use reload for GUIs in Maya, I follow a simple routine. I create a Python tab
that contains the code for reloading. The code imports and reloads one module per
line. It is very important the modules are listed from general at the top to specific at
the bottom. To reload, I make sure the GUI is closed, highlight the tab's code, and
execute it using Ctrl + Enter. Finally, I reopen the GUI, which should have picked up
the changes. If the code wasn't updated properly, I just restart Maya.

Working in this way ensures that the code for a single tool is cohesive enough that no
more than a handful of modules need to be reloaded at a time. If you need to reload
your entire codebase as you work, you should structure your code so you only need
to make changes in a few files at once.

It should be noted that reloading a module will not preserve module state. In other
words, the module-level window variable that is on the hierarchyconvertermaya
module will be reset back to None. A new controller and window will be created the
next time the hierarchyconvertermaya.show function is called. This can potentially
cause a problem if we have many callbacks registered. We will ignore this problem
since there is no single good solution.

[165]

Building Graphical User Interfaces for Maya

And finally, it's worth reiterating that reloading should not become a way of life, but
a necessary convenience for an unfortunate reality. If you find yourself worrying
about reloading, writing utilities to facilitate it, or sharing import/reload scripts, I'd
suggest that you are using the wrong solution to your iteration speed problem.

Armed with this knowledge, create a new Python tab in the Script Editor and
into it type:

import hierarchyconvertergui
reload (hierarchyconvertergui)
import hierarchyconvertermaya
reload (hierarchyconvertermaya)

Verify the sorting behavior is fixed if you haven't already. Close your hierarchy
converter GUI if it's open, highlight the tab's code, press Ctrl + Enter, and click the
shelf button to open the hierarchy converter GUI again.

Emitting a signal from Maya

Now that the tool window that sorts properly, we will move on to hooking up Maya
to emit the selectionChanged signal on the controller.

There are two ways to have Maya call your code when it does something: script jobs
and Maya API callbacks. Script jobs are handled through the scriptJgob command.
They are a MEL construct and, in my opinion, not well suited to a Python world.
Callbacks are a complex topic and script jobs are an abstraction that is difficult to use
and full of holes. With Python, we have access to Maya's API, which I feel provides
a much better interface into Maya callbacks. We will not be using script jobs in this
book, and unless you already have an affinity for them, I suggest you avoid them.
Certainly they have served many scripters very well for a long time, and it's possible
you have successfully used and loved script jobs. However, for the style of code in
this book, they are not as good a fit as Maya API callbacks.

We are going to make our first foray into the Maya API. We'll explore it
much more in Chapter 7, Taming the Maya API. For now, we only need to
use it to register a callback to be invoked when the selection changes. Open
hierarchyconvertermaya.py and change its contents to the following;:

import maya.OpenMaya as OpenMaya

import pymel.core as pmc

import hierarchyconvertergui as hierconvgui
import mayautils

_window = None

[166]

Chapter 5

def show() :
global _window
if window is None:
cont = hierconvgui.HierarchyConverterController ()
def emit selchanged(): #(1)
cont.selectionChanged.emit (
pmc.selected(type="'transform'))
OpenMaya.MEventMessage.addEventCallback(#(2)
'SelectionChanged', emit selchanged)
parent = mayautils.get maya window ()
_window = hierconvgui.create window(cont, parent)
_window. show ()

There are two important changes we made to hook up the callback:

* The emit_selchanged function is the callback that Maya will invoke.
This callback will emit the controller's selectionChanged event, which
will in turn update the GUL Ignore the underscore (_) parameter. It will
be explained in Chapter 7, Taming the Maya API, when we look at more
API methods.

* Hook the emit_selchanged function into Maya using the OpenMaya.
MEventMessage.addEventCallback method. Maya will invoke emit_
selchanged when its selection changes.

Now, if you reload all your code and open the GUI, you should notice the status bar
text updates as you change the selection. You should add a few nulls to your scene to
help you test it out. Use Create | Empty Group or Ctrl+G to create nulls.

Connecting Maya to a signal

Let's hook up Maya to run the hierarchy conversion on selected objects when the
Convert button is pressed. The changes are highlighted in the following code:

import maya.OpenMaya as OpenMaya

import pymel.core as pmc

import hierarchyconvertergui as hierconvgui
import mayautils

import charcreator #(1)

_window = None

def show() :
global _window

[167]

Building Graphical User Interfaces for Maya

if window is None:
cont = hierconvgui.HierarchyConverterController ()
def emit selchanged():
cont .selectionChanged.emit (
pmc.selected (type="'transform'))
OpenMaya .MEventMessage .addEventCallback (
'SelectionChanged', emit selchanged)
parent = mayautils.get maya window ()
_window = hierconvgui.create window(cont, parent)
def onconvert (prefix): #(2)
settings = dict(
charcreator.SETTINGS DEFAULT,
prefix=unicode (prefix)) #(3)
charcreator.convert hierarchies main(settings)
_window.convertClicked.connect (onconvert) #(4)
_window. show ()

Let's walk through the changes:

* Import the charcreator module we built in Chapter 2, Writing
Composable Code.

* Create the onconvert callback function that will be invoked when Convert is
pressed. It will create a copy of the default hierarchy converter settings, and
supply the prefix from the GUIL The charcreator.convert_hierarchies_
main function will be invoked with these settings.

* Depending on the Qt implementation, the value of prefix may be a Python
string or a QString instance. Convert it to a Unicode string just in case.

* Finally, connect the window's convertClicked signal to call the
onconvert callback.

Notice that we didn't need to go into charcreator to make any changes. In fact, I
wrote that code well before starting this chapter, without knowing it'd be hooked up
to a GUI. I didn't need to change the code at all. You'll recall that we built the library
in a chapter titled Writing Composable Code. That is what good programming is all
about! Well written code, using clear interfaces and standard, extensible techniques.

[168]

Chapter 5

Verifying the hierarchy converter works

If you try out the hierarchy converter tool now, you should make sure of the following;:

* The tool's appearance in Maya is consistent with Maya's theme, but has the
OS's appearance when running it from pure Python or mayapy.

* The window sorts properly with Maya and Maya's other windows, such as
the Script Editor and Hypershade.

* The status bar text updates when the selection changes.

* Any selected transform nodes are converted when the Convert button
is clicked.

* You have a small amount of GUI-only code that is easy to maintain because it
is easily testable outside of Maya, and decoupled from any Maya logic.

Congratulations! Even though this GUI is relatively simple, you've built it using
techniques that will scale up well to much more complex systems.

Working with menus

Working effectively with Maya's menu system involves marrying Maya Ul
commands with PySide to get the best of both worlds. Maya's menus are an
abstraction of standard Qt widgets, and we should use that same abstraction,
through Ul commands, rather than creating our own. However, we may still want to
work with the controls in more sophisticated ways than Maya allows, requiring us
access to the actual Qt object.

For the next few sections, we'll create a way to highlight menu items as new until the
first time they are clicked.

Creating a top-level menu

Maya's UI commands work just like its other commands. A UI object is represented
by a pipe-delimited hierarchical path, such as 'MayaWindow | DemoMenu | menuIt
em254'. When we use a command to create a UI object, such as a menu, we need to
know the path to its parent.

[169]

Building Graphical User Interfaces for Maya

In the case of creating an entry on Maya's menu bar alongside File, Edit, and Help,
we need to know the path to the main Maya window. We can do this through the
following function. Place the code into the mayautils.py file that should already
exist in your development root.

import pymel.core as pmc

def get main window name() :

return pmc.MelGlobals () ['gMainWindow']

To create the top level menu, open the Script Editor, and type and execute
the following;:

import mayautils
import pymel.core as pmc
menu = pmc.menu (

'DemoMenu', parent=mayautils.get main window name ())

You should now have a menu named DemoMenu just to the left of the Help menu.

Getting the Qt object from a Maya path

Let's use PyMEL's menuItem command to create a menu item under the new
DemoMenu menu. Enter the following code into the Script Editor and execute it:

def callback():
print 'Hello, reader!'
menuitem = pmc.menultem (

parent=menu, label='Greet', command=callback)

If you click on the DemoMenu menu there should be a single entry under it that has
the text of Greet. When the Greet menu item is clicked, Hello, reader! should be
printed into the top Script Editor pane.

If we look at the value of menuitem by printing it from the Script Editor, we can see it's
a PyMEL object that has a path, just like a regular node. Your exact path may differ.

print repr (menuitem)

ui.SubMenultem('MayaWindow|DemoMenu|menuItem254 ')

[170]

Chapter 5

We are going to convert this path into a Qt object. This is actually quite simple due to
some helpers Maya gives us and the wrapinstance function in the gt shim module.
Add the following code into the mayautils.py file:

def uipath to gtobject (pathstr) :
""r"Return the QtObject for a Maya UI path to a control,
layout, or menu item.
Return None if no item is found.
wn
ptr = OpenMayaUI.MQtUtil.findControl (pathstr)
if ptr is None:
ptr = OpenMayaUI.MQtUtil.findLayout (pathstr)
if ptr is None:
ptr = OpenMayaUI.MQtUtil.findMenultem(pathstr)
if ptr is not None:
return wrapinstance (ptr)
return None

We use the maya.OpenMayaUI.MQtUtil class to get the pointer for the object a path
is referring to. The uipath_to_gtobject function will search controls, layouts, and
menus looking for the specified object. If the object is found, it's pointer is converted
into a Qt object by calling the gt shim.wrapinstance function. If nothing is found,
the function returns None.

Changing the font of a widget

We can use this new mayautils.uipath to gtobject function to make the font of
a menu item bold. Execute the following code from the Script Editor:

reload (mayautils)

action = mayautils.uipath to gtobject (menuitem) #(1)
font = action.font () #(2)

font.setBold (True) #(3)

action.setFont (font) #(4)

This block of code introduces us to changing the appearance of Qt widgets.

1. First, we get the gwidgetAction that represents our menu item. A
QWidgetAction is a type of QAction, which Qt commonly uses to represent
menu items. It is not a widget itself so we cannot manipulate it like we would
other widgets. For example, it has no palette or color information to control
its styling. But it does have a font we can manipulate.

[171]

Building Graphical User Interfaces for Maya

2. Get the font for the gwidgetAction representing our menu item. The font
is an instance of QFont, which contains the font settings for a widget. Note
that a copy of the action's font is returned from the action. font () method.
Mutating it does not affect the font of the action.

Make the font bold by calling the setBold (True) method.

Reassign the updated font instance back to the action, which will update the
appearance of the menu item.

After this code is run, the Greet menu item under the DemoMenu menu should
have a bold font. Now that we know how to change a menu item's appearance, we
can generalize this code for reuse. In the next section, we will create a way to mark
menu items as new, and unmark them when they are clicked for the first time.

Marking menus as new

Let's take the code we wrote in the previous section and put it into a reusable
function. The function will take a PyMEL menu item or path string, get the Qt
object for it, and set its font to bold. Create a file named newmenumarker.py in your
development root with the following code:

import pymel.core as pmc
import mayautils
from gtshim import QtGui

def register menuitem(menuitem path) :
action = mayautils.uipath to gtobject (menuitem path)
font = action.font ()
font.setBold (True)
action.setFont (font)

In order to test the preceding function, we need to reset the font of the Greet menu
item. We can do this by creating a new QFont instance and assigning it to the action.
The new QFont will be set to all the Maya-defined defaults. Run the following from
the Script Editor, and the font of Greet should revert back to its non-bold default.

from gtshim import QtGui
action.setFont (QtGui.QFont ())

We can re-register the menu item, making its font bold, using the function we
just wrote.

import newmenumarker
newmenumarker.register menuitem(menuitem)

[172]

Chapter 5

After running the preceding code, Greet should again have a bold font.

The next step is to make it so that when the menu item is clicked, the font is set back
to its default. Make the highlighted changes to the register menuitem function:

def register menuitem(menuitem path) :
action = mayautils.uipath to gtobject (menuitem path)
font = action.font ()
font.setBold (True)
action.setFont (font)
def setdefault():
action.setFont (QtGui.QFont ())
action.triggered.connect (setdefault)

We create a setdefault callback function, and connect it to the action's triggered
signal. The triggered signal is emitted when the menu item is clicked.

Let's see this in action. We'll need to reset our font and then re-register the item. Run
this from the Script Editor.

action.setFont (QtGui.QFont ())
reload (newmenumarker)
newmenumarker.register menuitem(menuitem)

Our menu item should now have a bold font. After we click it, the font should return
to normal.

While the current code serves as a demonstration for customizing menus, it still
needs some work to be functional enough for non-demonstration use. Let's go ahead
and set up a more complex use case, and add a persistence layer so that the menu
items remember whether they are marked or not between Maya sessions.

Creating a test case

Let's add a test function to the bottom of the newmenumarker . py file:

def make test items():
menu = pmc.menu (
'DemoMenu', parent=mayautils.get main window name())
def makeitem(ind) :
def callback(_):
print 'Item', ind

item = pmc.menultem /(

[173]

Building Graphical User Interfaces for Maya

parent=menu, label='Item %s' % ind, command=callback)
register menuitem(item.name())
for i in range(5):
makeitem (i)

When we call this function, a menu named DemoMenu and five menu items will be
created for us. Each menu will have the name Item X, where X is 0 through 4.

You will need to restart Maya for this to work, since the menu creation will fail if
DemoMenu already exists. In a new Maya session, run the following:

import newmenumarker
newmenumarker.make test items ()

You should now have a DemoMenu menu with five menu items that have a
bold font.

Adding a persistence registry

Finally, we can put everything together by creating a way to persist the state of
no-longer-new menu items between Maya sessions. When a registered (bold) menu
item is clicked, it will revert its font and mark itself as no longer new in some persisted
registry. The next time the menu item is registered, the font will not be changed.

The registry, persistence, and hookup to the register menuitem function are all
included in the following code. We will go through it in-depth after the listing.

import json #(1)
import os

_REG_FILENAME = os.path.join(#(2)
os.environ['MAYA APP DIR'],
'newmenumarkingsystem.json')

def loadregisry():
try:
with open(REG_FILENAME) as f: #(3)
return json.load(f)
except IOError: #(4)
return {}

def saveregistry(registry):
with open(REG FILENAME, 'w') as f: #(5)
json.dump (registry, f£)

[174]

Chapter 5

def register menuitem 3 (menuitem path) :

if menuitem path in loadregisry(): #(6)
return

action = mayautils.uipath to gtobject (menuitem path)

font = action.font ()

font.setBold (True)

action.setFont (font)

def setdefault () :
action.setFont (QtGui.QFont ())
registry = loadregisry() #(7)
registry[menuitem path] = None
_saveregistry(registry) #(8)

action.triggered.connect (setdefault)

Let's walk through this code step-by-step. There are a number of new concepts.

1.

Import the json module. JSON is the JavaScript Object Notation file format.
The specifics are not important to us. The important thing is that it is a
human-readable format that can serialize simple Python types (numbers,
strings, lists, dictionaries), save them to a file, and deserialize (load) them
from a file. We could have used another format, such as pickle, but because
JSON is human-readable and only supports basic types, I prefer it for what
we are doing here.

Decide where to store the persisted registry. I have chosen to put it in the
Maya application directory. You can change this location to anywhere the
user has write access.

Use the built-in open function to read the registry's . json file. We used the
open function in Chapter 3, Dealing with Errors. We pass only the registry
filename to open, which opens the file in read mode so we can load from: it.

Pass the value returned from open into json. load, which will return the
contents of the file loaded as Python objects.

If the call to open raises an I0Error, we catch it and return an empty dict as
the default registry. We can get this error if the registry file does not yet exist.

To save the file, call open but pass it a second argument of 'w', which means
write mode. Save the passed-in registry into the file. Saving and loading basic
Python objects to a file is really easy.

Inside the register_menuitem function, check if the menu item path is
already in the registry. Its presence means the menu has already been clicked
and should not be marked.

[175]

Building Graphical User Interfaces for Maya

8. Inside the callback that is fired when the menu item is clicked, load the
registry and add the menu item so it won't be marked bold the next time it is
registered. We use a dict with None as the value of every key as the registry
because JSON does not support serializing Python set objects.

9. Finally, save the newly updated registry.

It's worth pointing out that we don't store the registry for any long period of time.
We load it from disk when registering the menu item to check if the item is already
in the registry, and we load the registry from disk right before updating it. The main
reason for this is that other Maya processes will be using the same registry file. If the
registry were loaded once, and stored throughout the entire session, then the last
Maya to write would have its version of the registry saved, but other ones would not.
Though file accesses are not free and should usually not be scattered around like this,
it is conceptually important here that the registry doesn't hang around in memory.

There is also the possibility that a Maya process will read the registry file while

it is being written, or write to it at the same time as other processes, causing
exceptions or inconsistencies. We will ignore this possibility to avoid confusing the
implementation too much.

Verifying the new menu marker works

Restart Maya and run newmenumarker.make_test_items (). Click on the items
named Item 1 and Item 2. If you look at the REG FILENAME file (on my Windows
machine, it is at C: \Users\rgalanakis\Documents\maya\newmenumarkingsystem.
json), it should have some contents.

Now shut down and restart Maya again. Run newmenumarker.make_test_items (),
and notice that Item 0, Item 3, and Item 4 have bold text but Item 1 and Item 2 do
not. If you were to shut down Maya, delete the registry file, restart Maya and run
newmenumarker.make_test_item() yetagain, you'd see all the test items have a
bold font. Deleting the file resets the registry.

Using alternative methods to style widgets

Styling in Qt is an advanced topic. You can style through code, or Qt Style Sheets,

which is a CSS-like language for styling GUIs. In either case, you should generally
avoid hard-coding things like colors. The Qt documentation includes lots of good

information about styling best practices.

[176]

Chapter 5

However, I generally discourage significant styling for tools. It is easy to sink many
hours into making things look just right, rather than improving how something
works. An exception would be icons; I wish people used custom icons more and
didn't just use text or the default!

If you are building an application, it may be important to make it look a certain way.
But if you are extending an application by creating your own windows and widgets,
as we do for Maya, you should prefer to depend on the already-styled application to
achieve consistency and reduce effort.

Working with Maya shelves
Like menus, Maya's shelves are an abstraction above plain Qt. Working with them at
the Qt level allows you to do things like place arbitrary widgets into a shelf, as in the
following image:

File Edit Modify Create Display Window

Surfaces =) 3 Subdivs Deformat

4 @ Nebula ¥+ »

i = = :T:'j- ﬁ: =i

Shading Lighting Show Renderer

S _.‘f"' ""?-"- E [.] s

You can work with shelves using most of the same techniques we used for menus.
However, there is one major problem. We can create custom menus directly using Qt
because users do not customize their menu setup heavily. Users do customize their
shelves, however, and expect these customizations to persist across sessions. Nearly
every aspect of a shelf and its buttons can be customized. Shelves are persisted as
MEL files, though, so any custom Python and Qt widgets or behavior we hook up
dynamically is lost. This presents a dilemma.

One solution is to completely recreate shelves when Maya starts up. This may

be acceptable in a controlled studio environment. However, if you want users to
have control over your custom shelf buttons, you're limited to what Maya already
provides and should avoid customizing. You will have to decide if the power of

Qt and Maya shelves is worth the complexity or restrictions it imposes. Hopefully
Autodesk will add some ways to do custom shelf styling and more complex widgets
in future versions of Autodesk Maya.

[177]

Building Graphical User Interfaces for Maya

Summary

In this chapter, we learned all about using PySide to build graphical user interfaces.
First, we went over some important concepts and strategies for building GUIs

with PySide. Then we saw how writing your interface with Qt is superior to using

a WYSIWYG editor or Maya commands. Our main project was building a GUI
frontend for the hierarchy converter library we built in Chapter 2, Writing Composable
Code. We developed and tested the GUI totally outside of Maya, including mocking
up how it responds to user interaction. We then hooked it up for actual use in Maya
with a minimal amount of code. Finally, we did some work with Maya's menu
system, creating a system to mark menu items as new, and revert their styling the
first time they are clicked.

If this chapter was all about improving how humans interact with Maya, the next
chapter is the total opposite. We will explore ways to control Maya in a totally
automated fashion so that it can be scripted to perform complex tasks orchestrated
from outside of Maya itself.

[178]

Automating Maya from
the Outside

Most of the programming we do in Maya is about automation. There's little that can
be accomplished with code that cannot otherwise be done by hand. We create code
to run inside of Maya, during a user's session, to get them faster from point A to
point B. We speed up what takes too long to be pleasant or practical.

In this chapter, though, we will do programming that isn't directly about speeding
what a user normally does. We're going to develop a system that will allow us to
control and automate Maya in arbitrary ways. The controlling code will not run
inside of Maya, but in its own Python process. We will not control Maya using an
application-specific feature like the command port, but a general request-reply
system that could be at home in another application. Automating Maya from the
outside will open up totally new possibilities for designing tools and pipelines.

We will start by learning about the request-reply pattern for client and server
communication, and how to implement it using the powerful ZeroMQ library. After
that, we will figure out how to build the automation system, and enumerate important
design considerations like error handling, timeouts, and handshakes. We will build
the system in a series of steps, incrementally adding functionality. Along the way, we
will learn about subprocesses, Maya's startup routine, environment configuration, and
how to execute arbitrary code in Python. Finally, we look at some ways to leverage the
automation system, and improvements that can be made.

Automating Maya from the Outside

Controlling Maya through request-reply

There is a plethora of documentation on the request-reply (often called
request-response) pattern, since it is the pattern that most of HTTP works with.
In simple terms: a client requests something from a server and the server replies.
That's it! Our automation system will be a very basic implementation of this
pattern pattern. We are not, for example, implementing a web browser. We will
be using monogamous clients and servers, sharing a common protocol, with
synchronous behavior, and residing on the same machine. The extent of our
required request-reply knowledge is minimal.

So that's all you need to know about request-reply right now: the client requests
something from the server, and the server replies. Rinse and repeat.

Using a Python client and Maya server

Our implementation of request-reply will be using a Python client and Maya
server. The term server here is used in the sense that Maya will be the thing
receiving requests and sending replies; this is your plain Maya, running on
whatever computer and OS you want. Think of server as a conceptual role,
not a machine or special process.

Our plan is taking shape: the client will tell Maya what to do, and Maya
(our server) will do it and send the result.

Astute readers may have already figured out that Maya, by
o virtue of hosting Python, can also be a client that talks to another
~ Maya (or even itself!) as a server. This is a fun implementation
Q possibility, but it helps to not think about it. The fact that it would
be Maya hosting a Python client, and not another application or
standard Python process, is irrelevant.

Controlling Python through exec and eval

Fortunately there's an easy way to dynamically tell Python what to do. We can send
a string from the client to the server and have the server interpret the string as code.
This is a wonderful aspect of dynamic languages like Python.

We will primarily use the exec statement to execute code and control Maya. We will

use the eval function to evaluate an expression when we need a result back from
Maya. We'll look at exec and eval in much more detail when we implement our
request-reply system.

[180]

Chapter 6

Handling problems with IPC

When doing any inter-process communication (IPC), there are several things that
must be considered. Doubly so when communicating with Maya, as we are using
an often fragile application in a way that its designers never intended.

One problem is the monogamy or pairing of the server and client process. Usually a
server listens on a predefined port. HTTP servers use port 80, for example. We cannot
run multiple Maya servers all using the same port, so how can we dynamically allocate
ports for our server and client pairs?

Another problem is availability. What happens if the server goes down? We will put
a timeout mechanism into place so the client doesn't hang indefinitely.

Yet another complication is process lifetime. We have a server and client that are
tightly coupled. One client, one server. The client needs to manage the process
lifetime for the server, so the server is killed if the client process exits.

Finally, we need a graceful way to handle errors. Dealing with errors between
processes can involve considerable complexity. We must be careful about how
we handle errors, so our server is resilient to bad client requests and the client
can understand what happened when something goes wrong on the server.

Our design must address all of these considerations. But first, we'll set up ZeroMQ
and explore a simple example program.

Installing ZeroMQ

To run the code in this chapter, you will need to have the PyZMQ Python
package installed. PyZMQ provides Python bindings to the included ZeroMQ
asynchronous messaging library. It is relatively easy to install PyZMQ. It provides
binary distributions for Windows and OS X on its Python Package Index page at
https://pypi.python.org/pypi/pyzmg/. Refer to Chapter 9, Becoming a Part of
the Python Community, for instructions on how to install third-party packages like
PyZMQ that contain C code.

[181]

https://pypi.python.org/pypi/pyzmq/

Automating Maya from the Outside

Demonstrating request-reply with ZeroMQ

Creating a request-reply client and server in Python is easy, and well covered in the
excellent ZMQ- The Guide located at http://zguide.zeromg.org/py:all. Hereis a
very simple implementation of the request-reply pattern explained previously. Save
the following code to a scratch file like C: \mayapybook\pylib\regrepdemo.py to
use for testing. Feel free to delete this file after going through these examples.

import sys
import zmg

if sys.argv[-1] == 'client':
print 'Client is going to send.'
regsock = zmg.Context () .socket (zmg.REQ)
regsock.connect ('tecp://127.0.0.1:5555")
regsock.send('Hello from client!!')
recv = regsock.recv ()
print 'Client received', recv, 'exiting.'
else:
print 'Server is listening.'
repsock = zmg.Context () .socket (zmg.REP)
repsock.bind('tep://127.0.0.1:5555")
recv = repsock.recv ()
print 'Server received', recv
repsock.send('Hello from server!')
print 'Server sent, exiting.'

To see this example in action, open up two command line prompts. In the first,
we'll run the server. Enter the first line from the following example and the second
line will print into the console.

> mayapy C:\mayapybook\pylib\reqgrepdemo.py

Server is listening

In the second prompt, we will run the client. Run the first line and the lines following
it will be printed.

> mayapy C:\mayapybook\pylib\reqgrepdemo.py client
Client is going to send

Client received Hello from server! exiting.

[182]

http://zguide.zeromq.org/py:all

Chapter 6

If you go back to the first (server) prompt, some additional lines were printed.

Server received Hello from client!

Server sent, exiting.

The server process starts, prints, then binds to a port. Ports, binding, and connecting
is described in the next section. The call to a recv method blocks, so when the client
or server calls recv, the Python process will wait there until there is something to
receive. Then the client process starts, prints, connects, and calls the send method to
send a message to the server. The server prints that it received the message, sends its
reply, prints again, and exits. The client receives the reply, prints, and also exits.

Notice how directly the Python code maps to the request-reply pattern. You don't
need to understand how TCP works, you don't need to know what an ACK or packet
is, you barely need to know anything about network programming at all, and you
can still have the totally awesome request-reply Maya automation system we're
going to develop in this chapter.

I would encourage you, of course, to learn about what is actually going on, but it is by
no means required. If you would like to learn more about ZeroMQ you should read
some of ZeroMQ- The Guide. To learn about networks and network programming in
general, see the excellent Foundations of Python Network Programming by John Goerzen
and Brandon Rhodes.

Explaining connection strings, ports, bind,
and connect

Most of the previous example should be abstract enough that you can take it for
granted. The exceptions are connection strings, ports, binding, and connecting.

A port is a numbered resource on a computer, between 1 and 65535. Computers

(and processes on the same computer) can talk to each other by sending and receiving
data over ports. There is a lot more to the topic of ports that we do not need to cover
here. We just need to know that port 5555 is used in the example, but we could have
chosen nearly any port number. Later on, we'll stop using predefined ports, and start
using randomly chosen open ports.

[183]

Automating Maya from the Outside

Sockets can bind or connect to a port. For our purposes, a request socket will always
use the connect method, and a reply socket will always use the bind method. When
you tell the reply socket to bind, it locks that port so no other socket can bind to it.
When a request socket connects, however, you're telling it what port the listening
server is bound to. The sending of data will happen on whatever port ZMQ chooses.

Both binding and connecting takes a connection string like "tcp://127.0.0.1:5555".
In that connection string, 5555 is the port, and tcp is the protocol for sending data
between client and server. We will forgo a discussion of protocols in this book and just
use tcp. The string 127.0.0.1 is an IP address which indicates we are using our local
computer as the server machine. We will use 127.0. 0.1 for our connection strings for
the entire chapter. For those interested, the Supporting control from a remote computer
section later in the chapter has more information on using the automation system with
remote machines.

Because of our limited use case, the previous example and these definitions cover
pretty much all the network programming topics we'll need. However, just because
our request-reply system doesn't require much network programming skill doesn't
mean it is simple. There is a good deal of complexity our system will need to handle.

Designing the automation system

With some understanding of how ZeroMQ and request-reply systems work,
we will now design the automation system. We'll start by going over some
design considerations and use cases.

Pairing one client and one server

Normally, a server deals with many clients, usually concurrently. It can do this
because of the design of most servers: all state changes, like withdrawing money
from a bank account, happen in something like a database. The server processes
themselves are stateless. The web server translating a web request to a database call
does not remember anything relevant about the transaction. Databases are designed
to allow multiple readers and writers to work simultaneously on shared state.

[184]

Chapter 6

We do not have this luxury in Maya. Maya is not a database and we cannot design

as if it were one. When a client asks the server to create a sphere, the client expects
the sphere to remain there until the client deletes it. It does not expect the state of the
Maya scene to be changed by any other client. We must have monogamous (paired)
clients and servers. They must also behave synchronously. That is, the client blocks
while waiting for the server, and the server does not reply to the client until it is done
processing. When we write code to be used in the automation system, we still want
to write normal looking Maya code.

This paired client/server requirement leads us to our next design consideration.

Bootstrapping the server from the client

Bootstrapping comes from the phrase "pulling yourself up by your own bootstraps."
There are several uses of it in computer science (it's where the phrase "booting the
computer" comes from). Generally it means "starting a more complex process from a
simpler process" and that is the definition here.

Because our client and server are paired, we need the client process to start up
(bootstrap) the server process, and eventually kill the server process as well. This
creates a pretty complex problem that needs to be solved if we hope to have multiple
clients connected each to its own server.

The client-server handshake

The fact that we'll need multiple clients bootstrapping their own servers means
hard-coding a port like we did with 5555 earlier cannot work. This is because each
server needs to bind to its own port (recall that only a single socket can bind to a
given port). Nor can the client simply find an open port, start the server process, and
tell it to use that number. By the time the server starts up, the port that was open can
be bound by another process. There would be a race condition between the server
and any other process binding to the port.

[185]

Automating Maya from the Outside

So we need to perform a handshake, illustrated in the following diagram.

Client Process

Start Client

v
‘ Bind to open port ’

Server Process

Becomes handshake port

y

Start server Server startu
Pass in handshake port P

Bind to open port
Becomes 'real’ port

v
‘ Connect to ’

handshake port

A 4

A
Send 'real' port on ’

Reov 'real port handshake port

A 4 y

Acknowledge Recv ’

'real' port acknowledgement

y

Close handshake
port

y
Close handshake ’

port

Request on B

Reply on 'real’
'real' port

port

A 4

[186]

Chapter 6

Let's follow along with the image, starting from the top left.

1. Create a client.

2. The client binds to any open port, which we'll call the handshake port.
No other process can use this port once the client binds. The client binding
means that, during the handshake process, our client will reply and our
server will request. This is an inversion of their final roles.

3. The client starts the server process, telling it the handshake port. We will
pass the handshake port number from the client to the server using a
command line argument.

4. The server process starts up, and binds to a different open port. We'll call
this the application port, or app port for short. Once the handshake is over,
all of the work will happen over the application port.

5. The server process connects to the handshake port, and sends a request
to the client, telling the client to use the application port for further
communication.

6. The client sends a reply back to the server, acknowledging it has received
the application port. We need synchronization at this point. If the server
were to not wait for an acknowledgment, it could possibly send its data
before the client is ready to receive it.

7. The client and server each close their sockets accessing the handshake port.
The handshake is complete.

The client connects to the application port.

The client is now in its role as requester and the server in its role as the replier,
and all further communication happens over the application port.

The key part of the handshake is that, for the handshake itself, roles are reversed.
The server is the client, sending a request that includes the application port number.
The client is the server, receiving the application port number. Once the handshake is
done, both actors revert to their proper roles, with client as the requester and server
as the replier.

[187]

Automating Maya from the Outside

Defining the server loop

All servers, at their core, run a loop that just calls recv on a socket and operates on
what is received. Our server will look essentially like this:

sock = zmg.Context () .socket (zmg.REP)
sock.bind('tcp://127.0.0.1:5555")
while True:
request = sock.recv()
response = process_request (request)
sock.send (response)

There are, of course, many differences between this and a real server loop, such
as error handling and timeouts. This is fundamentally, though, the design of our
server loop.

Serializing requests and responses

We'll need to send more than ASCII strings between client and server. We can use a

serializer to convert data into bytes that can be sent across the network. We will use
the json module from the Python standard library for this task. Our previous server
loop example with serialization support added looks like the following:

sock = zmg.Context () .socket (zmg.REP)

sock.bind('tcp://127.0.0.1:5556")

while True:
request = json.loads(sock.recv())
response = process_request (request)
sock.send (json.dumps (response))

The same pattern will occur on the client as well. The json. loads function will be
called on what is received, and json.dumps will be called on what is being sent.

In Chapter 5, Building Graphical User Interfaces for Maya, we
used json.dump and json. load to save to and load from a
file. Here, we use json.dumps and json.loads (notice the
» trailing s character) to save Python objects to bytes and read
% Python objects from bytes. Use dump and 1oad when working
=" with files (or any file-like object, in the parlance of Python), and
dumps and loads when working with in-memory byte strings.

We could also use the send_json and recv_json methods
on the ZMQ socket, but I've chosen to be explicit here.

[188]

Chapter 6

Choosing what the server does

In the preceding example, we did not specify what data the request variable refers

to. We'll use a very simple design: the client will send a list of two items to the server.
The first item will tell the server what to do, and the second item will be the arguments
for it. We are just choosing this as an arbitrary convention. You are free to design your
own convention for what data is sent between the client and server.

Instead of calling a mysterious process_request function as in our previous
example, let's put the request processing code inside of our loop. We will add or
subtract the two values in the second item depending on whether the first item
is the + or - character.

sock = zmg.Context () .socket (zmg.REP)
sock.bind('tcp://127.0.0.1:5557")
while True:
request = json.loads(sock.recv())
func, args = request
a, b = args
if func == '+':
response = a + b
elif func == '-':
response = a - b
sock.gend (json.dumps (response))

This design is a rudimentary way for the client to specify a remote procedure call
(RPC) to execute on the server.

However, what if func is not + or -, or the arguments cannot be added or subtracted?
The server would raise an exception.

Handling exceptions between client and
server

As we saw in Chapter 3, Dealing with Errors, exception handling is a complex topic.
The complexity is greatly increased when dealing with exceptions across processes.
There are two main types of exceptions in a server and client environment.

The first type of exception is due to a logical bug on the server. These should raise
a fatal exception, bring down the server process, and potentially notify the people
maintaining the code. A faulted server may cause the client to hang and timeout.
However, these exceptions should happen very rarely. The server code is actually
quite small and straightforward, since most of it is simply responding to client
requests. We will not handle this type of error in this chapter.

[189]

Automating Maya from the Outside

The second type of exception happens when the server is fulfilling the client's
request, such as adding two numbers. If the client wants to add a string and a
number, the server should, of course, not crash. The server should indicate to
the client that an exception occurred, along with the traceback and any other
diagnostic information.

This second type of error can occur for a number of reasons.

* The client's request cannot be deserialized on the server. Perhaps the client
has serialized and sent a Python object that the server does not know about,
or has used a different serializer than the server. For example, if the server
uses json and the client pickle, the server will not know how to deserialize
client requests.

* The client's request causes an error. For example, if the client sends ['+",
(1, 'a')],trying to add an integer and string would raise an exception.
This is the most common type of error.

* The result of the client's request cannot be serialized. For example, if the
client's request causes the server to try to serialize a PyMEL object, an error
would be raised because PYMEL nodes cannot be serialized.

* The client asks the server to do something it does not recognize. In the
preceding example, if the client sent * instead of + or -, the server would
not know what to do.

You may want to handle each of these errors in a distinct manner. For the sake of
simplicity, we will not distinguish between the first three. The last one will be handled
explicitly, however.

In order to tell the client there was a problem, we will use status codes. Conceptually,
this is just like the HTTP status codes you may be familiar with, such as 200 0K or 404
Not Found. We will use three status codes: 1 to indicate success, 2 to indicate an invalid
method (the last type of error listed previously), and 3 for all other errors. The response
will be a two-item list of [<status code>, <responses].

Here is the updated server code with exception support:

import traceback # (1)
while True:
recved = sock.recv ()
try:
func, args = json.loads (recved)
a, b = args
if func == '+':
response = a + b

[190]

Chapter 6

code = 1 #(2)
elif func == '-':

response = a - b
code = 1 #(2)
else: #(3)
code = 2
response = 'Invalid method: ' + func

pickled = json.dumps([code, responsel)
except Exception: #(4)

code = 3

response = ''.join(traceback.format exc())

pickled = json.dumps([code, response])
sock.send (pickled)

Let's walk through the changes in the preceding code:

1.

Import the traceback module, which we will use to get information about
the error which we can send back to the client.

If the server fulfills the client request (adds or subtracts) successfully, set the
status code to 1 and response to the value the request computed.

If the server does not recognize the request, set the status code to 2 and
response to a message indicating what happened.

If there's an exception anywhere, set the status code to 3, and response
to the current traceback formatted as a string. This should give the client
some information about what went wrong, albeit in a pretty opaque form.
We cannot send the exception itself because it may not be serializable by
the server or deserializable by the client.

There are many ways to handle errors on our server. This is just the absolute
minimum of functionality. As you build on and improve this chapter's code, you
should also improve the error handling.

Understanding the Maya startup routine

Most of our design so far has been Maya agnostic. We will now switch gears and
focus on Maya, understanding how Maya starts up and how we can use Python

to control the startup routine. We'll start with a brief digression to look at Maya's
batch and GUI modes. Then we'll understand how Maya starts up and some of its
configuration options. Finally, we'll step back and take a higher-level view of how
we want to control the startup, so that we know what sort of code to write when we
actually implement our automation system.

[191]

Automating Maya from the Outside

Using batch mode versus GUI mode

Maya can run in either its normal GUI mode, or in batch mode, which is
Maya without any GUI. Code can query which mode is active by calling pmc.
about (batch=True). Almost every Maya or PyYMEL command will work in
batch mode, though you may run into some that only work in GUI mode.

Most usage of the Maya server will probably be in batch mode. There are many
legitimate uses for a GUI version of Maya running the automation server, however,
such as setting up two-way communication between Maya and another application
like a game editor, Adobe Photoshop or Autodesk MotionBuilder. We will not
support a GUI mode server in this chapter for the sake of simplicity. Should you
want to try on your own, the changes are straightforward. See the section Running
a server in a Maya GUI session later in this chapter.

In order to run Maya in batch mode, you will need to run mayabatch.exe instead
of maya.exe on Windows, or pass in the -batch command line flag to the maya
executable on OS X and Linux. See the coming Using command line options for
more information.

Choosing a startup configuration mechanism

Maya's startup mechanisms are pretty standard. Maya is configured by passing
in command line options and by using environment variables. Once Maya goes
through its startup process and is fully initialized, it runs a series of user-defined
scripts. We will look at the former two mechanisms in the next sections. We will
not deal with user-defined scripts, such as userSetup.mel, in this chapter.

I should note that many of the principles of Maya's startup apply to other programs as
well, and serve as a good example of how to design user-customizable applications.

Using command line options

To see the complete list of Maya's command line options, see the Start Maya from the
command line section of the Autodesk help. We are interested in the -command flag.

The -command flag allows us to pass a string containing MEL code that Maya will
execute after it starts. We can use this string to execute Python code that will launch
our server, in addition to any additional startup logic. We can do this with the
python MEL function. For example, we could launch Maya with maya -command
'python ("import mymodule;mymodule.runserver ()")' to have Maya import
the mymodule module and invoke its runserver function after Maya is finished
initializing. We will use this technique to run our actual reply server.

[192]

Chapter 6

Another relevant command line option is -batch. As mentioned previously, on
OS X and Linux you will need to use the -batch flag to launch Maya in batch
mode, instead of using mayabatch.exe as we use in this chapter's code.

Using environment variables

There are many parts of Maya that can be customized by changing environment
variables. For more documentation about environment variables, including how to
work with them from your operating system's shell or terminal, you should refer to
your operating system's documentation. Using Python, we can change environment
variables in a cross-platform way using the os.environ dictionary or the os.getenv
and os . putenv functions.

When we start our Maya process, it will inherit the environment variables from its
parent process, which is the process starting Maya. As long as we are launching Maya
from a compatible interpreter, whether mayapy or vanilla Python, environment variables
should not pose a problem. A compatible interpreter would be using Python 2.6 x64
with Maya 2012 64bit, for example. An interpreter using a different Python version,
architecture, or compiler would be incompatible. If you need to launch a process with a
different Python interpreter, you will need to clean and adjust the environment before
launching the process.

We will not deal with environment variables in this chapter since we can just use
the mayapy executable and its matching maya (or mayabatch) executable. If you need
to change environment variables before launching a child process, you should look
at the env argument of the subprocess. Popen class. You can take a copy of the
current environment variables in os . environ, modify them, and feed them into

the new process.

Building the request-reply automation
system

Finally, we can begin putting theory into practice, and build our request-reply
Maya automation system.

We'll start by learning how Python packages work, how to bootstrap Maya from
another process, and how process pipes work. After that, we will set up a bare
bones client and server. Once that is working, we will add support for exec and
eval, exceptions, timeouts, and more.

[193]

Automating Maya from the Outside

Creating a Python package

Before writing our code, we need to create some files. Because these files are all
closely related, we can put them in a folder and create a Python package.

Start by creating a mayaserver directory in your development root. For this book,
that is C: \mayapybook\pylib\mayaserver. Inside, create three empty files:
__init_ .py, client.py, and server.py.

The _init__ .py file is what turns this folder in a package. It allows us to do things
like import mayaserver, which would import the __init__ .py file, and import
mayaserver.client and import mayaserver.server, which import the client.
py and server.py files, respectively. Code that is common between the client and
server goes into the __init__ .py file. In our case, that will be just a few values that
we will define later.

Using Python packages is an essential tool for keeping files organized and
code cohesive.

Launching Maya from Python

Launching an application by wrapping it in a Python script is a very powerful
pattern. It allows us to configure everything about an application's environment
before it starts up. For example, if we need to set Maya's environment variables
like MAYA SCRIPT PATH, which need to be set before Maya starts, we can use a
Python launch script to do that.

The script we are creating will be rather limited. It will make many assumptions,
and support only what we need to have Maya start up and run our reply server.
However, this code can be expanded to create a startup routine for a regular Maya.
It could do things like custom menu and shelf creation, in addition to or instead of
running the reply server.

Let's start by writing just enough code to launch and kill a Maya process. Open

up C:\mayapybook\pylib\mayaserver\client.py and put in the following code.
I'have hard-coded paths to the Maya executable on my Windows system. You
must replace this with whatever is appropriate for your machine, or calculate it
dynamically.

import os
import subprocess

#(1)
MAYAEXE = r'C:\Program Files\Autodesk\Maya2014\bin\mayabatch.exe'

[194]

Chapter 6

def kill (process): #(2)

if os.name == 'nt':

os.system('taskkill /f /pid %s' % process.pid)
else:

process.terminate ()

if name == ' main ':

import time

proc = subprocess.Popen ([MAYAEXE]) #(3)

proc = subprocess.Popen ([MAYAEXE, '-batch'])
time.sleep(5) #(4)

kill (proc) #(5)

Let's walk through this script.

5.

Define the path to your mayabatch. exe file.

Define a function named kil1. This function takes in a subprocess.Popen
instance, which we create later in the script, and kills it. Normally, you could
just use Popen.terminate () to kill the process, but it does not work reliably
on Windows. So we use the taskkill system call on Windows to kill the
process. On most other operating systems, the terminate () method will
kill the process.

Use the subprocess. Popen class to start Maya. The first argument is a list
of arguments that you would pass on the command line to start the process.
On Windows, we are not passing Maya any arguments so it is a list with just
the path to the executable. On OS X and Linux you must pass the -batch
argument to maya to use Maya in batch mode.

Sleep for five seconds. This will allow us to observe what Maya prints out
before it exits.

Finally, kill the process.

If you run the mayaserver/client.py file, a new Maya process will start up,
and after five seconds, the client will kill the Maya server process and exit. You
should see something like the following in the Python window you used to run
mayaserver/client.py:

> mayapy mayaserver/client.py

Result: untitled

[195]

Automating Maya from the Outside

Where did this Result: untitled text come from?

It was printed by Maya when it started up. The Maya process is a child process
of the parent process that launched it. We know that a child process inherits the
environment variables of its parent. It also inherits the parent's file handles, so
what is printed in the child process will also print in the parent process. You can
change this behavior by supplying values to the stdout and stderr parameters
of subprocess. Popen, but we will just allow the Maya server process to print
into the client process that launches it.

Automatically Kkilling the server

Instead of explicitly killing our Maya server process, we can instead have it killed
automatically when the client process exits. We will use the atexit module to
register an exit handler. The exit handler will run and kill the server process just
before the client process exits. Make the highlighted changes to the mayaserver/
client.py file:

import atexit

def start process() :
process = subprocess.Popen ([MAYAEXE])
atexit.register(kill, process)

def kill (process) :
if os.name == 'nt':
os.system('taskkill /f /pid %s' % process.pid)
else:
process.terminate ()

if name == ' main ':
import time
start_ process ()
time.sleep(5)

Register the exit handler by calling atexit.register (kill, process).
The atexit module takes care of running code when the process exits, and
will call kill (process).

This feature is important because if the client process does not kill the server
process, the server may stay alive and have to be killed manually. Now, no matter
what, your server process will die when your client process exits.

[196]

Chapter 6

No matter what? Of course not! There are several circumstances that can cause the
exit handler not to run, including;:

* The client process crashes due to some interpreter error or is killed
by the operating system.

* The client process does not work properly with the atexit module
(or more precisely, the sys.exitfunc behavior it relies on). This is
common where the interpreter is embedded in another application.
In fact, atexit is broken in many versions of Maya!

* Another exit handler, run before ours, forcibly terminates the client
process, causing our exit handler to not be run.

* An error occurs in our exit handler or the ki1l function.

There are ways we can mitigate these issues, but none of them are clean or elegant.
Generally you can have some sort of process watcher that will kill the server process
once the client is dead, or you can start a kill timer in the server so that it will shut
down if it goes a certain amount of time without hearing from the client. You should
consider adding this functionality as needed.

Creating a basic Maya server

Next we'll create the server loop that will run in Maya. For now, it will reply to the
client with a hard-coded response. The following code goes into the mayaserver/
server.py file.

import json #(1)
import zmg

def runserver(): #(2)
sock = zmg.Context () .socket (zmg.REP)
sock.bind('tcp://127.0.0.1:5454") #(3)
while True: #(4)
recv = json.loads (sock.recv())
sock.send (json.dumps ('Pinged with %$s' % recv))

Let's walk through the preceding code.

1. Import the json and zmg modules.

2. Create the runserver function. This function contains a loop that calls
recv indefinitely. Rather than break out of the loop, we rely on the client
to terminate the server process.

[197]

Automating Maya from the Outside

3.

Create a reply socket and bind it to a hard-coded port, like we did in the
example earlier in this chapter.

Inside of the while True loop, the server calls the sock.recv () method to
receive requests from the client and then sock. send to send a reply. The code
uses the json module to serialize and deserialize requests and responses.

The code in mayaserver/server.py will run inside of the Maya server process.
Now let's see how to tell Maya to execute this code when it starts up.

Run

ning code at Maya startup

In order to have Maya run code when it starts up, we can use the -command command
line argument. As explained in the Using command line options section earlier in this
chapter, we will use MEL's python function to run some Python code. The Python code
will import the mayaserver. server module and call its runserver function. We also
need functions to create a request socket and handle sending and receiving of requests
and responses. The following is the new and changed code in mayaserver/client.py.

COMMAND = ('python ("import mayaserver.server;'
'mayaserver.server.runserver ()") ;') #(1)
def start process() :
process = subprocess.Popen (
[MAYAEXE, '-command', COMMAND]) # (2)

def

def

atexit.register(kill, process)
return process

create client(): #(3)

socket = zmg.Context () .socket (zmg.REQ)
socket.connect ('tcp://127.0.0.1:5454")
return socket

sendrecv (socket, data): #(4)

socket.send (json.dumps (data))
unpickrecved = json.loads (socket.recv())
return unpickrecved

if name == ' main ':

proc = start process|()

sock = create client()

got = sendrecv(sock, 'Ping') #(5)

print 'Got: %r. Shutting down.' % got #(6)

[198]

Chapter 6

If we run this code, the following should be printed to the console:

> mayapy mayaserver/client.py

Got: u'Pinged with Ping'. Shutting down.
Let's take a closer look at how this code works.

1. Create a string that is the MEL command Maya will run. Maya will import
the mayaserver.server module and then call mayaserver.server.
runserver (), which will run the code we just wrote in mayaserver/
server.py and keep Maya in an endless loop.

2. Call the Maya executable with the -command flag and the MEL command
string. Maya will know to run that MEL command after it starts up and
finishes initializing.

3. The create_client function creates the request socket, hardcoded to
connect to the same port the server will bind to.

4. The sendrecv function sends requests and receives responses, using json
to serialize and deserialize, just like the server.

5. After starting the process and creating the client socket, send a request to
the server. The server sends back a response acknowledging the request.

6. Print the response into the console and exit.

We now have a working client and server with all of the basic pieces in place. The rest
of this chapter will be adding features make it useful and robust. The most important
piece to implement is support for the eval and exec of arbitrary code strings, so the
client can do what it wants on the server.

Understanding eval and exec

You may be familiar with the concept of eval and exec from other dynamic
languages. They allow the construction of code in the form of strings that can
then be evaluated or executed, as if it were normal code.

There are some important differences between eval and exec. The most important
difference is that eval returns the value of an expression and exec executes a
statement. An expression represents a value. The expression 1 + 1 represents the
value 2. A statement does something. For example, the assert statement may raise
an AssertionError. Statements never return a meaningful value (they always
return None).

[199]

Automating Maya from the Outside

As the following code demonstrates, we get two different behaviors whether

we eval or exec the string "1 + 1". Also note that eval is a function and is thus
called with parenthesis, while exec is a statement, like print, and is not called
with parenthesis.

>>> eval ('l + 1)
2

>>> exec 'l + 1!

The call to eval returned 2 while the call to exec returned None (and thus the
interactive interpreter did not print a value). But what happens if we eval and
exec a print statement instead of an expression?

>>> exec 'print 1'

1

>>> eval ('print 1')

Traceback (most recent call last):

File "<strings>", line 1
print 1

SyntaxError: invalid syntax

The call to exec printed the value successfully, but eval raised a SyntaxError.
This is because print is a statement and eval can only evaluate an expression.

Another common statement is assignment. We can use exec to assign some value
to a variable, and then use eval to evaluate the name of the variable and get back
the value.

>>> exec 'b =
>>> eval('b')
2

The preceding pattern works because the execution scope of code at the interactive
prompt is all global. What if we were to hide the exec call from the previous example
away in a function, thus changing the execution scope of the exec call?

>>> def exec2(s):
exec s
>>> exec2('ec = 2 + 2'")
>>> eval('c')
Traceback (most recent call last):
NameError: name 'c' is not defined

The preceding code raises a NameError because the variable c, created in the exec2
function, is not accessible in the scope where eval was called.

[200]

Chapter 6

For our request-reply server, we want the ability for code to refer to variables
assigned in earlier exec statements. We can do this by providing some additional
arguments for exec and eval to override their execution scope.

>>> def exec3(s):
exec s in globals(), globals()
>>> exec3('d = 3 + 3')
>>> eval('d', globals(), globals())
6

Both eval and exec take two optional arguments that define the dictionaries to use
for global and local variables. The globals () function returns a dictionary of the
names and values of variables in the global (module-level) scope. Calling exec will
mutate this dictionary when an assignment is done (just like regular Python code
would), and the variable assigned to will then be available in the eval function.
The following code demonstrates this behavior.

>>> 'e' in globals()

False

>>> e =1

>>> 'e' in globals() # Normal assignment puts e in globals
True

>>> 'f' in globals()

False

>>> exec 'f = 1!

>>> 'f' in globals() # Assignment in exec puts f in globals
True

Execution scope can be a complicated topic, but fortunately we don't need to fully
understand how it works in order to leverage it.

Adding support for eval and exec

Armed with this information, we can add support for eval and exec into the
automation system. At the bottom of the mayaserver/client.py file, we will send
a request to test each. Instead of just sending a string to the server, like ' Ping' in our
previous client example, we will send a tuple of (function name, code string).
This is the same way the demonstration server we built earlier in this chapter works,
except here we will use the strings 'eval' and 'exec' instead of '+' and '-'.

if name == ' main ':
proc = start process|()
sock = create client()

[201]

Automating Maya from the Outside

goteval = sendrecv(sock, ('eval', 'l + 1'"))
print 'Got Eval: %r' % goteval

sendrecv (sock, ('exec', 'a = 3'))

sendrecv (sock, ('exec', 'a *= 2'))

gotexec = sendrecv(sock, ('eval', 'a'))

)

print 'Got Exec: %r' % gotexec

Now in mayaserver/server.py, we can choose a different method based on
whether the client asks for eval or exec. The required changes are highlighted
in the following code:

def runserver():
sock = zmg.Context () .socket (zmg.REP)
sock.bind('tcp://127.0.0.1:5454")
while True:
func, arg = json.loads (sock.recv())
if func == 'exec':
exec arg in globals(), globals()
tosend = None
elif func == 'eval':
tosend = eval(arg, globals(), globals())
sock.send (json.dumps (tosend))

If you run mayaserver/client.py from the command line, you should see the
following output:

> mayapy mayaserver/client.py
Got Eval: 2
Got Exec: 6

There is a latent bug here. If the client sends a function name that is not eval or
exec, a NameError will be raised on the server because the tosend variable will
not be assigned. Exception handling will be added in the next section so this
situation can be managed gracefully.

Adding support for exception handling

Handling exceptions involves changes to our server and client. The server will need
to catch exceptions that may happen as a result of client requests and send back a
status code and response. The client must key off of this status code and raise an
exception in the case of an unsuccessful request. We will replicate what we did in
the Handling exceptions between client and server section earlier in this chapter.

[202]

Chapter 6

First we will declare our status codes in the mayaserver/ init .py file.

SUCCESS =1
INVALID METHOD = 2
UNHANDLED ERROR = 3

Next, inside of mayaserver/server.py, add a try/except around all the code that
handles a client request, and add support for setting the status code.

import json
import traceback #(1)
import zmg
import mayaserver #(1)

def runserver () :
sock = zmg.Context () .socket (zmg.REP)
sock.bind('tcp://127.0.0.1:5454")
while True:
recved = sock.recv ()
try: #(2)
func, arg = json.loads (recved)
code = mayaserver.SUCCESS #(3)
response = None

if func == 'exec':
exec arg in globals (), globals()
elif func == 'eval':
response = eval (arg, globals(), globals())
else:
code = mayaserver.INVALID METHOD #(4)
response = func

pickled = json.dumps([code, response])
except Exception: #(5)
pickled = json.dumps ([
mayaserver .UNHANDLED ERROR,
''.join(traceback.format exc())])
sock.send (pickled)

Let's go through the highlighted changes in more detail:

1. Import the traceback and mayaserver modules. The mayaserver module
contains the status codes defined in the mayaserver/ init .py file.

2. Create a try/except around the request handling code.

[203]

Automating Maya from the Outside

3.

Set the default code and response. The exec statement always returns None,
but eval returns the value to use as the response.

If the client sends a function name that is not eval or exec, the status code
is set to mayaserver . INVALID METHOD and the response is the requested
method's name.

If an exception occurs, the status code is set to mayaserver . UNHANDLED
ERROR and the response is set to the traceback string.

Finally, inside of mayaserver/client.py, check the status code of the response and
behave accordingly.

import mayaserver #(1)

def sendrecv (socket, data):

tosend = json.dumps (data)
socket .send (tosend)
recved = socket.recv ()

code, response = json.loads(recved) #(2)

if code == mayaserver.SUCCESS: #(3)
return response

if code == mayaserver.UNHANDLED ERROR: # (4)
raise RuntimeError (response)

if code == mayaserver.INVALID METHOD: #(5)

raise RuntimeError('Sent invalid method: %s' % response)
raise RuntimeError ('Unhandled response: %s, %s' % (
code, response)) #(6)

if name == ' main ':

proc = start process|()
sock = create client()
try:

sendrecv (sock, ('spam', '')) #(7)
except RuntimeError as ex:

print 'Got intended error!', ex
try:

sendrecv(sock, ('eval', 'a = 1')) #(8)
except RuntimeError as ex:

print 'Got intended error!', ex

[204]

Chapter 6

Let's first go over the highlighted changes in the sendrecv function:

1. Import mayaserver to access the status codes.
Unpack the server's response into (code, response).

If the request was a success, just return the response.

Ll

If the server encountered an error while handling our request, raise a
RuntimeError containing the traceback string. This isn't the most beautiful
way of signaling to the client what caused the error, but it's usually enough.

5. If the request was for an invalid method, raise a Runt imeError containing
the invalid name. You may also just want to take down the entire Python
process, as this should never happen except due to a coding error.

6. Finally, if the response code is unrecognized, raise a RuntimeError.
This should also never happen except due to a coding error.

Instead of the overuse of RuntimeError, you may want to define and raise
custom error types, such as RequestError, InvalidMethodError, and
UnknownStatusCodeError. We will use the more naive Runt imeError
implementation in this chapter, though.

In the test code under if _ name == ' main_ ', we have two tests:

1. Ensure that sending an invalid method name (' spam') causes the client
to raise a RuntimeError.

2. Ensure that sending an invalid request, such as trying to eval the string
'1/0" (which would cause a ZeroDivisionError), causes the client to
raise a RuntimeError.

If you run the mayaserver/client.py file, you should get something like
the following;:

> mayapy mayaserver/client.py
Got intended error! Sent invalid method: spam

Got intended error! Traceback (most recent call last):...

Even though we've covered the places we expect an exception to be raised, what
about the unexpected places? What if Maya crashes, is accidentally killed by the user,
or there is some logical bug we haven't uncovered? The server process would die or
lock up indefinitely, and the client would be forever waiting for a response.

[205]

Automating Maya from the Outside

Adding support for timeouts

It is not acceptable for a client to wait forever for a response it will never receive. The
user would have to kill the client process manually, which is not just inconvenient but
can also result in lost work. We can get around this by timing out and raising an error
inside of the client's sendrecv function.

The good news is that timeouts only involve work on the client side, and we will not
have to deal with the server for this feature. The bad news is that however you cut it,
timeouts add complexity. Make the highlighted changes to add support for timeouts
into the mayaserver/client.py file.

import time #(1)

def sendrecv (socket, data, timeoutSecs=10.0): #(2)
socket.send (json.dumps (data))
starttime = time.time() #(3)
while True: #(4)
try:
recved = socket.recv(zmg.NOBLOCK) #(5)
break #(6)
except zmg.Again: #(7)
if time.time() - starttime > timeoutSecs: #(8)
raise
time.sleep(.1) #(9)

code, response = json.loads (recved) #(10)
...same code as before...

The new code is quite nuanced so let's go over it step-by-step.

Import the time module.

Add a timeoutSecs keyword argument to the sendrecv function.
This new argument defines the number of seconds the client should
wait for a response from the server before timing out.

3. After we send but before we recv, record the current time in seconds by
calling the time.time () function.

Create a while True loop that will loop until we explicitly break out of it.

5. Pass the zmg.NOBLOCK argument to the socket . recv method. Instead of
waiting indefinitely for a response, the call to socket . recv will immediately
raise the zmg.Again error if there is no response from the server waiting.

[206]

Chapter 6

10.

If there is a response waiting, break out of the while loop and continue
processing the response (see point 10).

Catch the zmg.Again error. This is a special error that is raised when
socket . recv (zmg.NOBLOCK) is called and there's nothing to receive

(see point 5).

If the current time is greater than our start time plus timeout, re-raise the
exception. This is the timeout.

Otherwise, sleep for 0.1 seconds and try again (go back to point 5). You may
want to handle your sleep duration differently, or avoid sleeping altogether.
Sleeping just pauses the current thread for the provided number of seconds.
Since we only have one thread, sleeping will pause the client process.

The code from here —response deserialization and processing —is the same
as it was.

Let's test the new timeout functionality by putting the following code at the bottom
of the mayaserver/client.py file and running it through the mayapy interpreter:

if

name == ' main ':

start_ process ()
sock = create client()
sendrecv (sock, ('exec', 'import time')) #(1)
try:
sendrecv (sock, ('exec', 'time.sleep(5)'), .1) #(2)
except zmg.Again:
print 'Timed out successfully!'
sock = create client() #(3)
sendrecv (sock, ('eval', 'l + 1')) #(4)
print 'And recovered successfully!'

Let's go through how the preceding test code works.

1.

The client will instruct the server to import the time module so it can be used
for the next call (see point 2). Refer to the Understanding eval and exec section
earlier in this chapter for an explanation of execution scope and why this
works.

Tell the server to sleep for 5 seconds, but only use a timeout of 0.1 seconds.
The client will time out waiting for the server.

[207]

Automating Maya from the Outside

3. If a ZeroMQ socket does not receive successfully, it cannot be used to send
again. Recall that in the case of a timeout, the socket . recv method raises an
error and does not complete. To recover from the timeout, we must create a
new socket to use. This is an unfortunate but important implementation detail.
If we try to reuse the old socket, an error will be raised the next time the
socket . send method is called because the socket will be in an invalid state.

4. To demonstrate that we can recover from the timeout, we send and receive a
final eval request using the new socket.

Running mayaserver/client.py should result in the following printed to the console:

> mayapy mayaserver/client.py
Timed out successfully!

And recovered successfully!

Adding support for the client-server handshake

Finally, we get to the key remaining component of the automation system. Review
The client-server handshake section earlier in this chapter if you need a reminder as to
how the handshake is supposed to work. This will require adding quite a bit more
code and removing the hard-coded connection strings.

First we will add the handshake code to the mayaserver/server.py file. This involves
changing all the code before the while True loop, as shown in the following listing:

def runserver (handshake port) :
sock = zmg.Context () .socket (zmg.REP)
appport = sock.bind to random port ('tcp://127.0.0.1")

handshakesock = zmg.Context () .socket (zmg.REQ)
handshakesock.connect ('tcp://127.0.0.1:%s' % handshake port)
handshakesock.send (str (appport))

handshakesock.recv () # acknowledgement

handshakesock.close ()

... server loop is the same ...

The first thing to note is that the runserver function takes in the handshake port
number as an argument. Before starting the handshake, bind a new reply socket

to a random port. This bound port is the application port and will be used for the
application's client/server communication. This takes the place of the hard-coded
port used previously. Then create a request socket and connect to the handshake port.
We send the application port number from the server to the client over the handshake
port, wait for the client to send an acknowledgment, and close the handshake port.
From this point, we can use the same exact server loop we had previously.

[208]

Chapter 6

The client code has much more substantial changes.

COMMAND = ('python ("import mayaserver.server;'
'mayaserver.server.runserver (%$s)") ;') #(1)
def start process(): #(2)

def

handshakesock = zmg.Context () .socket (zmg.REP) #(3)
handshakeport = handshakesock.bind to random port (
'tecp://127.0.0.1")
command = COMMAND % handshakeport #(4)
process = subprocess.Popen (
[MAYAEXE, '-command', command]) #(5)
atexit.register(kill, process)
appport = int (handshakesock.recv()) #(6)
handshakesock.send ('"')
handshakesock.close () #(7)
return appport #(8)

create client (port): #(9)

socket = zmg.Context () .socket (zmg.REQ)
socket.connect ('tcp://127.0.0.1:%s' % port)
return socket

Let's go over the preceding code, which is almost all new.

1.

The command string has changed because the handshake port number must
be provided as part of the string. The cOMMAND variable now acts as a template
that we will customize with the handshake port.

Before the Maya process starts, initiate the handshake. Create the handshake
socket and bind it to a random port. Recall we did the same, but for the
application port and socket, on the server.

Create a concrete command string, formatting it with the handshake
port number.

Use the concrete command string as the value of the - command argument
for a new Maya process. Use the atexit module to kill the server when
the client dies, just like we were doing already.

Wait for the server to send the client the application port number by
receiving on the handshake socket.

Acknowledge that the application port was received by sending an empty
string. Close the handshake socket. The handshake is over.

[209]

Automating Maya from the Outside

7. Return the application port number. The start_process function cannot
return a socket because we may need to recreate sockets to the same server
in the case of a timeout, as in the previous section.

8. Change the create_client function so it takes in a port and uses that
instead of the hard-coded port it used previously.

Let's test out the handshake by starting up two clients and servers simultaneously.
Place the following code at the bottom of mayaserver/client.py.

if name == ' main ':
def start and get pid():

appport = start process()

sock = create client (appport)

sendrecv (sock, ('exec', 'import os'))

return sendrecv(sock, ('eval', 'os.getpid()'))

srvlPid = start and get pid()

srv2Pid = start_and get pid()

print 'Client proc %s started Maya procs: %s, %s' % (
os.getpid(), srvlPid, srv2Pid)

If you run this code in a new mayapy interpreter, you should get something like
the following:

> mayapy mayaserver/client.py

Result: untitled

Result: untitled

Client proc 8056 started Maya procs: 4448, 6264

The Result: untitled line was printed twice because two Maya processes were
started. With hard-coded ports, we could only start up one Maya process. Now we
can create any number of client and server pairs from any number of Python processes.

At this point, our automation system is fully functional and ready for use. While
there are still improvements to make (aren't there always?), the rest of this chapter
will look into some use cases and improvements for the automation system.

[210]

Chapter 6

Practical uses and improvements

We will close out the chapter by describing various uses for our automation system,
as well as a few improvements.

Batch processing using Maya

The most obvious application for the automation system is batch processing.
The following simple script will go through all files in the current directory,
delete all unknown nodes, and save the file to a new path. It will print out the
result of the processing for each file, and skip over errors.

import os

import mayaserver.client as mayaclient

execstr = """import pymel.core as pmc

pmc.

for

pmc.

def

openFile (%r, force=True)
item in pmc.ls(type='unknown') :
if item.exists():

pmc.delete (item)
system.saveAs ($r) """

process (socket, path):
newpath = os.path.splitext (path) [0] + ' clean.ma'
mayaclient.sendrecv (

socket, ('exec', execstr % (path, newpath)))

if name == ' main ':

sock = mayaclient.create client (mayaclient.start process())
paths = [p for p in os.listdir(os.getcwd())
if p.endswith(('.ma', '.mb'))]
for p in paths:
if p.endswith(('.ma', '.mb')):
print 'Processing', p
try:
process (sock, p)
print 'Success!', p
except RuntimeError:
print 'Failed!', p

[211]

Automating Maya from the Outside

While it is nice that the processing happens in a separate process, we can do much
better. The following is some additional code to parallelize the batching. Multiple
Maya instances will be processing files simultaneously.

def process files(paths):
sock = mayaclient.create client (mayaclient.start process())
for path in paths:
print 'Processing', path

try:
process (sock, path)
print 'Success!', path
except RuntimeError:
print 'Failed!', path
if name == ' main ':

import threading

paths = [f for f in os.listdir(os.getcwd())
if f.endswith(('.ma', '.mb'))]

threads = []
num procs = 4 # Or number of CPU cores, etc.
for i in range (num procs) :

chunk = [paths[j] for j in

range (i, len(paths), num procs)]
t = threading.Thread(target=process files, args=[chunk])
t.start ()

threads.append(t)
for t in threads:
t.join()

The preceding parallelization code will ultimately start four threads. Each thread will
process about a quarter of the total Maya files. The processing happens in a function
which will start a Maya process, and ask it to process each file in the thread's list of
files. Finally, the code waits for all threads to complete their work.

Because the processing happens on a number of threads, and the actual computation
takes place outside of the current Python process (in Maya), the work occurs mostly
in parallel. Threading is outside of the scope of this book so we will not go into more
detail. A cursory understanding of the Python standard library's threading module
should make the behavior of the preceding code clear. This technique is a great way
to make batch processing go much faster while adding very little new code.

[212]

Chapter 6

Running a server in a Maya GUI session

There are two changes we need to make in order to run the automation server in a
Maya session that has a GUIL

The first is to run the server loop on a background thread. If we run the server on the
main thread, the event loop will never be pumped, causing the GUI to be locked up.

~ Refer to Chapter 5, Building Graphical User Interfaces for
Maya, for an explanation of the event loop.

The second change is to use maya.utils.executeInMainThreadWithResult instead
of invoking exec or eval directly. The executeInMainThreadWwithResult function
takes a function and its arguments, and will schedule the function to be called in the
main thread when it is idle.

We must do this because the server loop runs outside of the main thread, but the
client request may need to interact with the Maya scene. You should only interact
with the Maya scene from the main thread. The following code demonstrates the
necessary changes. The code that hasn't changed is edited out.

import threading
from maya.utils import executeInMainThreadWithResult

def runserver (handshake port) :
threading.Thread (
target=_runserver, args=[handshake port]) .start ()

def eval(s):
return eval(s, globals(), globals())

def exec(s):
exec s in globals (), globals()

def runserver (handshake port) :

if func == 'exec':
executeInMainThreadWithResult (_exec, arg)
elif func == 'eval':
response = executeInMainThreadWithResult (
_eval, arg)

[213]

Automating Maya from the Outside

There are few things to take note of in the preceding code. First, the _runserver
function, which contains the server loop, executes in a thread so it does not block
the main Maya thread. The old runserver function just starts this thread.

Second, there are now _eval and _exec functions wrapping the underlying calls
to eval and exec. This makes the maya.utils.executeInMainThreadWithResult
function easier to use.

Finally, the _eval and _exec functions are called through maya.utils.
executeInMainThreadWithResult instead of being invoked directly.

Running automated tests in Maya

Running automated tests in Maya is notoriously difficult. While you can use the
mayapy interpreter for small, isolated unit tests like we did in Chapter 1, Introspecting
Maya, Python, and PyMEL, higher-level tests are more difficult. Many people desire
automated tests for critical components of a pipeline, such as the startup routine, menu
and shelf creation, important plugins, and exporters. However, Maya's complexity
makes these a frightening prospect. What happens if the startup code is broken or
Maya crashes?

We can use this chapter's automation system to better run high-level tests. A standard
Python or mayapy client can start up a Maya process and query information from it. It
can run the exporter and compare the result to a known good version, or use PyYMEL to
check whether the right menu items are created. If Maya crashes, or some fundamental
code in the startup routine is broken, the client can timeout and kill the server.

I've used the automation system presented in this chapter extensively for automated
testing of Maya and other applications. It has been a key component of creating
robust and stable software.

Adding support for logging

A full overview of Python logging is not in the scope of this book. However, with
any system that does input/output (IO), a robust logging solution is a necessity.
Problems happen, usually due to programmer error but often due to environment
problems, network disruptions, or faulty hardware. Errors in the server (or network)
may mean the client never gets a reply. Without logging, it is difficult or impossible
to know what happened. At the very least, you'll want to log when things start up,
log what you are about to send, and log what you receive before processing it too
much. Logging allows you to reconstruct what happened when the time comes to
reproduce and fix a bug.

[214]

Chapter 6

The following is an abbreviated server with some basic logging. You would want to
put similar logging into client functions as well:

import logging
log = logging.getLogger(name)

def runserver (handshake port) :
sock = zmg.Context () .socket (zmg.REP)
appport = sock.bind to random port('tcp://127.0.0.1")
log.info('Handshaking on %s, sending %s',
handshake port, appport)
... do handshake ...
log.info('Handshake finished, looping.')
while True:
recved = json.loads (sock.recv())
log.debug('recv: %s', recved)
... request processing ...
log.debug('send: %s', tosend)
sock.send (json.dumps (tosend))

Supporting multiple languages and
applications

Suppose all of your tools and programmers are using a language like C# instead
of Python, with the sole exception of Maya and people programming in Maya.
You can easily hook Maya into a tool written in any language by porting the client
into the language of your choice. Of course, the client still needs to assemble its
code strings in Python or whatever the language of the server is.

The design of the server is also not limited to Python and Maya. You can practically
use the server code as-is in another Python application. You can also use the same
concepts and write the server portion in an entirely different language in order to
control something like a game engine.

Supporting control from a remote computer

In this chapter, we dealt exclusively with a server and client on the same computer.
While it is feasible to have a remote Maya server process that is not started by

the client, I've found very limited value in this. That said, it would be useful in

a situation where Maya is not your main application, and you only need it to do
something like import files and export them into a different format.

[215]

Automating Maya from the Outside

You could run several Maya processes on another machine to support this type
of pipeline. This increases the complexity of the automation system, however,
since you'll need another solution for process lifetimes, debugging, persisting
state between client requests, clients interfering with each other, and more.

I wouldn't suggest it, but nor would I rule it out.

As a related concern, once you move from local to remote communication,
there's the issue of network security. Any communication should go on behind
a network firewall, so you can be blissfully unaware of the nasty world outside.

Designing an object-oriented system

It's possible to get quite far without custom classes. The function-based approach
presented in this chapter manages to work for the automation system, but it can
be simplified by using a few classes. There is an example of a more object-oriented
client in Chapter 7, Taming the Maya API. If you end up adopting the system
presented here for your own use, I suggest using an object-oriented design.

Evaluating other RPC frameworks

We discussed the concept of Remote Procedure Calls earlier, and several
frameworks exist for Python. I am sure between me typing these words and you
reading them, several more frameworks will come into existence. You may want
to try some of these frameworks first, and see if any of them work for your needs.
They can conceivably save a significant amount of effort.

Summary

In this chapter, we learned how to create a request-reply automation system in
Python using ZeroMQ. We learned some basics about network programming,
operating system processes, and how to control Maya's startup routine. We built
a system to start, control, and kill an arbitrary number of Maya processes from a
single Python or mayapy process. We finished up by exploring ways we can take
advantage of and improve our newfound powers.

In the next chapter, we will dive back into Maya. We will learn more about how
types and classes work in Python, how the OpenMaya API is designed, and how
to use it to perform complex tasks. We will also explore Maya's plugin system
and create a command plugin.

[216]

Taming the Maya AP

Maya's Python command system, MEL, is extremely powerful. You can use it

to automate and customize Maya to an incredible degree. Python and PyMEL
have largely superseded MEL because they are much more powerful and flexible.
We've put this power and flexibility to great use by creating composable libraries,
robust error handling, an automation system, and maintainable GUIs.

What we haven't yet discussed is Python's role in augmenting, and in many cases
replacing, C++ in Maya programming. There are some things that the command
system and MEL are designed to not do. Dealing with the Maya Application
Programming Interface (API) is one such thing. Python, however, can utilize most
of the Maya API that C++ has access to. In Chapter 8, Unleashing the Maya API through
Python, we will see how Python allows us to do things we cannot even do in C++,
and easily create custom Maya plugins in a very Pythonic way with no boilerplate.

Before we jump into that we will use this chapter to explain and demonstrate a number
of concepts central to the Maya API. We start off with learning about types and classes,
since the Maya APl is thoroughly object-oriented and designed around them. We

will explore the design of the Maya Python API, see how Maya exposes its C++ API
through Python bindings, and learn how to read the Maya API Reference. We will go
through several examples using the Maya Python API, including callbacks and mesh
creation. Finally, we'll dip our toes into the wonderful world of Maya Python plugins,
and see how the system works by creating a command plugin to play sounds.

Taming the Maya API

Explaining types

There are many definitions of the computer science term type. There are so many,

in fact, that choosing one is difficult. The best definition depends on what your
perspective is. A compiler writer may see a type as an abstract mathematical entity.
A statistics programmer may see it as a name and series of values. We will approach
types from the perspective of a Python programmer who needs to get work done.

I consider the terms type and class interchangeable in Python
% (though not in all other languages). It can be perhaps argued that
= they are not exactly the same, but for our purposes they are.

We'll start with the definition that a type is a name associated with some values.
A name and value pair is called an attribute. Consider the following statement:

widget = PySide.QtCore.QWidget ()

In that statement, the type of the widget variable is Pyside.QtCore.QWidget.

By virtue of widget being an instance of the gwidget type, it has certain names
and values. For example, widget has an attribute named destroyed. The value
of the destroyed attribute is an instance of the pySide.QtCore.QSignal type.

Usually a type represents some idea, so the names and values seek to describe
and support working with that idea, as we will see in the next section.

Dicts all the way down

In this section, we will create a type that represents a collection of unique items.
Think of it as only the keys in a dictionary, just like Python's set class. The type
needs an attribute to hold the items in the collection, which we'll call its state.

It also needs a number of attributes to interact with the state, such as adding,
removing, and querying items.

We introduced the phrase "dicts all the way down" in Chapter 1, Introspecting Maya,
Python, and PyMEL. It is relevant again here (of course it is, since Python iss dicts
all the way down!). A class can be thought of as a dictionary with special behavior.
For example, consider the following class. You can put it into a myset . py file in
your development root if you'd like to run the examples in this section.

class MySet (object) :
def init_ (self):
self. state = {}
def add(self, v):
self. state[v] = None

[218]

Chapter 7

def remove (self, v):
del self. statel(v]
def items(self):
return self. state.keys()

In the preceding code, the class statement defines a class named MysSet. It inherits
from the object type, which is the base class of all classes (we will ignore old-style
classes in this book). The Myset type has an attribute named _state which points
to a dictionary used to hold the unique items. It has three more attributes which are
methods: add, remove, and items. The first argument to every instance method on
a type is self, that is, the instance of the type. For example, consider the following
code, which creates and manipulates two unique instances of the Myset class:

>>> import myset

>>> sl = myset.MySet ()
>>> s2 = myset.MySet ()
>>> sl.add (1)

>>> g2.add('a')

>>> sl.items ()

[1]

>>> s2.items ()

['a']

In keeping which our theme that types are "dicts all the way down," you can access
the members of a type or instance through its _dict__ attribute, as shown in the
following example:

>>> myset.MySet. dict

[...(' init ', <function _ init at 0x...>),
(' module ', 'myset'),

('add', <function add at 0x...>),

('items', <function items at 0x...>),
('remove', <function remove at 0x...>)]

>>> s = myset.MySet ()
>>> s. dict
{' state': {}}

The Myset. dict__ attribute holds references to the methods and information about
the typeitself. The s. _ dict__ attribute just holds the values of the attributes for that
instance, such as the _state dictionary.

There is much more to types in Python, but the goal of this section is not an exhaustive
explanation. It is hopefully enough to get you up and running for the work we do in
the rest of this chapter.

[219]

Taming the Maya API

A\l

If you are confused by some of the terminology here, review the

Q Adding support for methods section in Chapter 1, Introspecting Maya,

Python, and PyMEL.

Using custom types to simplify code

Now that we've seen how to create custom classes, let's put them to work for us.
In this section, we will change the automation system client we built in Chapter 6,
Automating Maya from the Outside, to use a class instead of functions. Rather than
rewriting all of the original code, we will just create an easy-to-use wrapper class
around the original functions. Place the following code into a newmayaclient.py
file in your development root:

import zmg
import mayaserver.client as oldmayaclient

class MayaAutomationClient (object) :

def

def

def

__init_ (self): #(1)

self.realport = oldmayaclient.start process()
self .regsock = self. create client()

_create_client (self):

return oldmayaclient. create client (self.realport)

sendrecv (self, *args, **kwargs): #(2)
try: #(3)
return oldmayaclient.sendrecv (
self.regsock, *args, **kwargs)
except zmg.Again:
self .regsock = self. create client()
raise

Let's walk through the preceding code and compare it to the function-based version
from last chapter:

1. Classescanhavean__init__ method which is called just after the object is
constructed. The __init__ method initializes the object, usually assigning
some initial value to its attributes. When a MayaAutomationClient instance
is created, the Maya server process will be started, the handshake will be
performed, and the client's application socket will be created.

2. The only method callers need to worry about is now the sendrecv method.
They also only need to pass it the data to evaluate or execute, not the socket
to send the data with.

[220]

Chapter 7

3. The timeout behavior, where a new application socket must be created if
the server takes too long to respond to the client, is easily integrated into the
class' behavior. Previously, the caller needed to handle creating a new client
if the original timed out. This design is much simpler, and makes the socket
recreation an implementation detail.

Using a class hides complicated logic behind a simple interface. With the function-
based approach, it is incumbent upon the caller to know when and how to use the
start_process, create client, and sendrecv functions, and handle timeouts.
This is a lot of information for every caller to manage!

Compeare this to the preceding code using a custom type. The caller only needs to
create a MayaAutomationClient instance and invoke the sendrecv method on it.
That is significantly simpler!

This new class-based client can be used as follows:

>>> import newmayaclient

>>> cl = newmayaclient.MayaAutomationClient ()
>>> cl.sendrecv(('eval', 'l + 1'))

2

Using types is a great way to associate data with the functions that operate on
that data.

Introducing inheritance by drawing shapes

Another strength of classes is that they can be inherited. We saw the benefits of
inheritance in Chapter 1, Introspecting Maya, Python, and PyMEL, when working
with joints, transforms, and PyNodes. In this section, we will apply inheritance to
our own classes. We will create a base class to draw shapes in the Maya viewport.
Subclasses will customize the shapes that are actually drawn.

First, let's create our shape base class. It will deal with the low-level drawing code
that Python has access to through the Maya Python API. It's okay if you don't fully
understand the API calls here or are unfamiliar with OpenGL. In fact, that's precisely
the point of putting this code in a base class. Subclasses can inherit its drawing
behavior without having to learn about the Maya API or OpenGL:

from maya import OpenMayaRender # (1)
renderer = OpenMayaRender.MHardwareRenderer
glFT = renderer.theRenderer () .glFunctionTable ()

class Shape (object): #(2)

[221]

Taming the Maya API

def coords (self): #(3)
""r"Return a list of groups of points,
each group defining a line segment."""
return []

def draw(self, m3dview): #(4)

m3dview.beginGL () #(5)

for segmentcoords in self.coords(): #(6)
glFT.glBegin (OpenMayaRender .MGL_LINE STRIP) #(7)
for coords in segmentcoords: #(8)

glFT.glVertex3f (*coords)

glFT.glEnd () #(9)

m3dview.endGL() #(10)

Let's walk through the preceding example in detail:

1.

9.

Import the maya . OpenMayaRender module, which exposes classes useful for
rendering and drawing to the Maya Python APL. Just after the import, assign
the OpenGL function table helper to the g1FT variable. This provides helpers
for drawing, which will be used later.

Define the shape base class, which inherits from the object type.

Define a coords method and docstring. The subclasses we create next will
override the coords method, providing an alternative implementation. In the
base class, return an empty list of coordinates so nothing will be drawn.

Define a draw method that takes an OpenMayaUI .M3dview instance, which will
be passed in later. This function contains the logic for drawing our shape.

Tell the view to set itself up for OpenGL drawing. This pattern of paired

begin and end calls is unfortunately common throughout the Maya APL. It is
similar to the undoInfo (openChunk=True) and undoInfo (closeChunk=True)
pattern we wrapped with the mayautils.undo_chunk context manager

in Chapter 4, Leveraging Context Managers and Decorators in Maya. I would
encourage you to build a context manager if you use these functions often.

Loop through each segment. Each segment is a list of XYZ coordinate tuples.

Tell the OpenGL renderer to begin rendering a line strip. Subsequent calls
will add points to this line strip.

Go through each segment coordinate tuple, and add a point to the OpenGL
line strip that was opened in point 7.

Close the line strip.

10. Tell the M3aview that the OpenGL drawing is complete.

[222]

Chapter 7

11. Remember, the internals of the draw method are not for the faint of heart.
Putting them in the shape base class means we only have to write it once
but can use it many times.

. If you'd like to find out more about any of the API classes
~ used in the preceding example, you should refer to the
Q Maya API Reference. See the Navigating the Maya API
Reference section later in this chapter.

Now, let's create two subclasses that define concrete shapes: Cross and Square.

class Cross(Shape): #(1)
def coords(self): #(2)

return [
((-10, 0, 0), (10, 0, 0)),
((o, -10, 0), (0, 10, 0)),
((o, o, -10), (0, 0, 10)),]

class Square (Shape) : #(3)
def coords(self): #(4)

return [
((20, 20, 0),
(20, -20, 0),
(-20, -20, 0),
(-20, 20, 0),
(20, 20, 0))1]

Let's go through the preceding code example:

1. Define the cross class. It inherits from Shape, so it automatically picks up
the draw and coords methods.

2. Override the coords method. Return a list of three pairs of XYZ coordinate
tuples. Each pair defines a line segment which is an axis of the cross. The first
pair goes across the X axis, the second goes across the Y axis, and the third
across the z axis.

3. Define a square class that also inherits from the Shape class.

Override the coords method. Return a list containing a single line segment
of five points. Each point is a corner of the square. The first corner is repeated
at the end, so the segment is closed.

[223]

Taming the Maya API

Now, we can test out the drawing of our shapes by running the following code in the
Script Editor:

from maya import OpenMayaUI # (1)

m3dview = OpenMayaUI.M3dView.active3dvView () #(2)

m3dview.beginOverlayDrawing () #(3)

Square () .draw (m3dview) # (4)

Cross () .draw (m3dview)

m3dview.endOverlayDrawing () #(5)

Let's walk over the code line by line to better understand what's going on:
1. Import the maya.OpenMayaUI module, which provides Python exposure
to useful classes having to do with the Maya user interface.
Get the active viewport's M3dview instance so we can draw into it.

The call to m3dview.beginOverlayDrawing () sets up an OpenGL context
so we can draw into the viewport. This is another good place for a context
manager.

4. Create a new Square instance and call its draw method with the active
M3dview instance. Do the same for cross. This will draw into the viewport.

5. Tell the viewport to close the OpenGL context.

You should see the cross and the square drawn in the Maya viewport:

[224]

Chapter 7

Remember that your types should always adhere to the Liskov Substitution Principle,
which we learned about in Chapter 1, Introspecting Maya, Python, and PyMEL. I consider
it among the most important principles in object-oriented programming. It says that

if S is a subtype of T, then objects of type T can be used to replace objects of type S
without altering a program's correctness. In our case, this means that any subclass

of Shape that overrides the coords method should return a list of tuples of XYZ
coordinates for drawing.

Inheritance is a key to understanding and using the Maya API. Furthermore, the
pattern of having methods such as Shape . coords that are meant to be overridden in
subclasses is powerful, especially when we look at Maya plugins later in this chapter.

That said, inheritance can be abused. Designing with inheritance is a skill that will
take time to learn. We must use it in many areas of Maya, but think twice when
applying it to your own classes or frameworks.

Introducing Maya's APl and architecture

Maya, as we know, uses three distinct languages: MEL, Python, and C++. In
previous chapters, we've used Python in much the same way as we would have
used MEL, by creating high-level functionality and controls for Maya. We have seen,
however, that the general purpose design of Python has allowed us to do things

that we could not otherwise do in MEL. This includes building pure PySide GUIs

in Chapter 5, Building Graphical User Interfaces for Maya, and the automation system
from Chapter 6, Automating Maya from the Outside. These would simply not have
been possible in MEL and would have required some Maya-specific C++ coding.

Another unique application of Python in Maya, and the focus of this chapter,

is Python's access to the Maya API. In the previous section, we used the Maya
Python API to draw into the active viewport. Having Maya's API exposed to
Python means that every single artist and Python hacker has the full, raw power

of Maya available. No one is any longer bound by its scripting interface. This level
of power was once reserved for those with a healthy knowledge of C++, an IDE,
compiler, and the dogged determination necessary to create and distribute compiled
Maya plugins. Programming in Maya became much more democratic, and the
richness of tools exploded.

The explosion started in 2007, when Autodesk added support for Python into Maya
8.5. In this section, we will go over how the Maya Python API bindings work, how
Python and C++ work together, and how to navigate the sometimes obtuse Maya
API reference.

[225]

Taming the Maya API

Understanding the OpenMaya bindings

In Chapter 5, Building Graphical User Interfaces for Maya, we used PySide and PyQt,
which are Python bindings to the Qt C++ framework. The OpenMaya Python bindings
work in the same way and allow us to call C++ code from Python. Autodesk uses the
Simplified Wrapper and Interface Generator (SWIG) to create bindings between the
C++ API and Python. Let's look at how the bindings work in more detail, since the are
not as clean as something like PySide.

o In this chapter, I will use the terms Maya API or OpenMaya when
~ discussing the C++ or general Maya API, and Maya Python API
Q when discussing the Python bindings. You can find out more
about SWIG at www.swig.org.

There exists an MPxNode C++ class in the Maya APL. It is exposed to Python via
the maya . OpenMayaMPx . MPxNode class. All C++ classes, with a few exceptions, are
exposed to Python through one of the OpenMaya Python modules. These include
the maya.OpenMaya, maya .OpenMayaMPx, and maya . OpenMayaUI modules.

The C++ MPxNode . name () method that returns an MString object. In Python, the
MPxNode .name () method returns a Unicode string. Certain types that map directly
to Python types are automatically converted by the bindings, and in some cases are
not even exposed to Python. For example, the MString type maps to the Python
unicode type, and an MStringArray to a list of strings. Neither can be created by
Python directly. The MInt type maps to the Python int type, though MIntArray

is accessible to Python.

Not exposing all classes was a mistake by Autodesk. There are special
cases in the API where the implicit conversion between Python types
N and Maya Python API types can cause issues, such as the MFnMesh.
~ createBlindData method. Autodesk has recently developed a Maya
Q Python API 2.0, which should eventually fix these issues and replace
the original Maya Python API, similar to how PyMEL is superseding
maya.cmds. I have great hope for it, but as it is still quite new, I've
chosen to use the original Maya Python API in this book.

When we program with the Maya Python API, we are almost always calling C++
code under the hood. We are writing Python but using a C++ style. This is why
Python code using the API often looks very non-Pythonic. The OpenMaya idioms
are very different than what we're used to:

* Iteration and dealing with lists is clunky and limited. We must use classes
such as MIntArray, or populate collections like MSelectionList using an
add method.

[226]

www.swig.org

Chapter 7

* The infamous pass by reference design that leads to methods designed to
mutate an object passed in, rather than return something new.

* Function sets, introduced later, are necessary to do nearly anything with a
node. Nodes themselves do not have any real functionality.

All of these manifest themselves in the following code block, which converts a node's
name into an MObject instance and back into its name. The comments pointing out
these three problematic idioms are highlighted.

>>> from maya import OpenMaya

>>> sellist = OpenMaya.MSelectionList ()

>>> sellist.add(objname) #Can't initialize a list with items.
>>> mobj = OpenMaya.MObject ()

>>> gellist.getDependNode (0, mobj) #Pass by reference

>>> jntdepnode = OpenMaya.MFnDependencyNode (mobj) #Function sets
>>> jntdepnode.name ()

u'myobj '

It is necessary to understand each of these design decisions so that you can use the
Maya Python API effectively. They are not intuitive but they are important. We'll
learn how to cope with these designs throughout the rest of this chapter.

Navigating the Maya API Reference

Though there are many good examples and tutorials for using the Maya Python API,
the Maya API Reference will be your go-to source when you need to look something
up. However, it is a reference for C++, so you need to be comfortable translating the
documentation into Python in your head. Effective use of the Maya API Reference
requires understanding the underlying design and vocabulary.

For example, the MFnMesh. create method has three possible signatures, as shown in
the following example. The differences between the three versions are highlighted.

MObject create (
int numVertices,
int numPolygons,
const MPointArray &vertexArray,
const MIntArray &polygonCounts,
const MintArray &polygonConnects,
MObjeect parentOrOwner=MObject::kNullObj,
Mstatus *ReturnStatus=NULL)
MObject create (
int numVertices,
int numPolygons,

[227]

Taming the Maya API

const MFloatPointArray &vertexArray,
const MIntArray &polygonCounts,

const MintArray &polygonConnects,
MObject parentOrOwner=MObject::kNullObj,
Mstatus *ReturnStatus=NULL)

MObject create (

int numVertices,

int numPolygons,

const MPointArray &vertexArray,

const MIntArray &polygonCounts,

const MintArray &polygonConnects,

const MFloatArray &uArray,

const MFloatArray &vArray,

MObject parentOrOwner=MObject::kNullObj,
Mstatus *ReturnStatus=NULL)

This is a very common pattern in the Maya API. Let's go over the important points:

There are multiple versions of the same method. This is possible due to
method overloading, which is a feature of C++ and many other statically-typed
languages. Usually, it is enough to understand that any of those methods can
be called, and the bindings will choose the right one. In certain cases, Maya
may raise an error if the choice between two methods is ambiguous, and you
must find some way to disambiguate them. Python normally does not use
method overloading. Instead, it relies on optional arguments.

The signature of each method overload is different, but sometimes in small
ways. For example, the type of a certain parameter may be different, such

as where the vertexarray parameter changes between MPointArray and
MFloatPointArray types. A more significant difference is when the number
of parameters change, such as the addition of the uArray and vArray
parameters in the third method overload.

The last argument to each create method is an MStatus instance. This is
not used in Python, so ignore it. The Maya C++ APl is designed to support
programming by status code, so that if a method call fails, it returns or sets
a failure status code. In Python, an exception would be raised instead.

The type of each argument is specified, and many have an inconvenient
array type, such as MIntArray. You should use a Python list where possible,
but sometimes you must use an OpenMaya collection. If a method does

not accept a normal Python list, it will raise an error, and you can try using
OpenMaya objects instead.

[228]

Chapter 7

* The return type of the method is MObject, and is listed before the method
name. Methods commonly return an MStatus instance. You can ignore
MStatus return values, just like you can ignore it when it is a parameter.
Exceptions are automatically used instead.

The Maya API Reference is incredibly detailed and helpful. You should learn to read it
fluently to program with the Maya Python API effectively. It can be frustrating at first
if you've never used C++. However even if you've never programmed in a language
other than Python, you will get the hang of it eventually. I would also suggest learning
how to read basic C++ code, so you can better understand the examples included with
the reference.

Understanding MObjects and function sets

The Maya APl is designed around the concept of using MObjects to represent Maya
Dependency Graph nodes, and function sets for operating on those nodes. The Maya
API Reference has the following to say about the MObject type:

"MObject is the generic class for accessing all Maya internal modeling, animation
and rendering Objects, collectively referred to as Model Objects, through the API.
This includes all Dependency Graph (DG) Nodes, of which Directed Acyclic Graph
(DAG) Nodes are a subset."

It's important to note that an MObject is not the same as the underlying Maya node.
It only provides access to the underlying node. For example, deleting an Mobject
instance does not delete the Maya node. To work with a Maya node, you must use a
function set. A function set is a type prefixed with MFn, and it is usually constructed
with an Mobject instance. The PyMEL help has this to say about function sets:

"Because I am a huge nerd, I like to the think of the function sets as robotic 'mechs'
and the fundamental objects as 'spirits' or 'ghosts' that inhabit them, like in Ghost
in the Shell."

I find this description quite illustrative, even though I do not watch any manga.

The design of having fundamental objects and function sets works well for the Maya
API, which is an interface into an extensible C++ application. It is totally necessary
for Python, however. You should not design any Python framework this way.

When you are using PyMEL, you can access a PyNode's underlying API objects
through the __ api*_ methods, as shown in the following example:

>>> p = pmc.PyNode ('perspShape')
>>> p. apimfn ()

[229]

Taming the Maya API

<maya.OpenMaya.MFnCamera; proxy of <Swig Object of type 'MFnCa...
>>> p. apimdagpath ()

<maya.OpenMaya.MDagPath; proxy of <Swig Object of type 'MDagPa...
>>> a = p.focalLength

>>> a

Attribute (u'perspShape.focallength')

>>> a.__apimplug__ ()

<maya.OpenMaya.MPlug; proxy of <Swig Object of type 'MPlug *'

Truth be told, I've rarely had a need to access these methods, and as the PyYMEL help
says, they are implementation details and the names could change. They are there if
you need them, however, and can be useful when you use the Maya Python API and
PyMEL together.

Learning the Maya Python API by
example

Something like the Maya API is best explained through demonstration. Once you get
the hang of it, the Maya API Reference and its copious examples will be a wonderful
source of information. However, it will take some time and effort to become proficient.
This section will present several easy-to-tackle problems to help illustrate the Maya
Python APL

Converting a name to an MObject node

It's important to remember that when we step into the world of OpenMaya, we leave
the Pythonic simplicity of PyYMEL behind. The following line of code converts a node
name string into a PYMEL PyNode:

>>> pmc.PyNode ('mynode')
nt.Transform (u'mynode"')

In the wonderful world of the Maya Python API, though, there is much more code
involved to convert a string into the MObject instance that refers to the node:

>>> sellist = OpenMaya.MSelectionList () #(1)

>>> sellist.add('mynode') #(2)

>>> node = OpenMaya.MObject () #(3)

>>> sellist.getDependNode (0, node) #(4)

>>> node #(5)

<maya.OpenMaya.MObject; proxy of <Swig Object of type 'MObject...

[230]

Chapter 7

Let's go over the preceding example in more detail:

1. Create an instance of the woefully named MSelectionList type. It does not
necessarily have anything to do with selections. The MSelectionList must
be created and populated in separate steps.

2. Use the MSelectionList .add method, which can take a MEL-like selection
string (the name of the node, in our case) to add the object we are looking for
to the list.

3. Create an empty MObject instance that will eventually point to the node we
are looking for.

4. Pass this empty MObject to the MSelectionList.getDependNode method,
along with the index of the item in the MSelectionList instance. Since we
added only one item, the index is zero.

5. Finally, we have the MObject instance for our node. Note the unsightly string
representation of Maya Python API objects.

In most cases, though certainly not all, the API is easier to use than this. Inconvenient
patterns can also be hidden behind simpler functions. For example, the preceding
code could be wrapped in a name_to_mobject function.

Getting the name of an MObject

Finding an MObject by name is clunky, but finding the name of an MObject isn't so
bad. In PyMEL, such a routine is straightforward, involving a single method call:

>>> pynode.name ()
u'mynode'’

In the API, the same routine can still be a one-liner. It is also our first use of a
function set, which were introduced earlier in the chapter. In the following example,
the MFnDependencyNode function set it used to find the node's name.

>>> OpenMaya.MFnDependencyNode (mobject) .name ()
u'mynode'’

Getting the hash of a node

Getting the hash value of a node is similar to getting the name of a node. A hash
value is a fixed length value, such as a 32-bit integer, that represents a variable length
value, such as a string, which can be of any size. In Maya, because the hash of a node
should never change, you can use it for identifying and keeping track of nodes.

[231]

Taming the Maya API

Getting the hash of a node in Python is done with the built-in hash function. PyMEL
is smart enough to return the underlying node's hash value.

>>> hash (pynode)
409350872

Even if pynode is renamed or otherwise changes, it will still have the same hash.

To get the hash of an MObject, we use the maya.OpenMaya.MObjectHandle class.
While not a function set, it works conceptually the same, providing some additional
functionality to an MObject instance. To get the hash through the Maya Python AP],
you can use the following;:

>>> OpenMaya.MObjectHandle (mobject) .hashCode ()
409350872

Given the same underlying node, the hash from PyMEL will be the same as the hash
from the Maya APL This allows us to identify Maya nodes between PyMEL and the
AP], even if names change or all you have is the hash value.

As a final note, the rules around implementing a type that is properly hashable are
nuanced, and we will not explore them here. The internet has enough good resources
on implementing hashable Python objects properly. How PyMEL handles hashing is
explained in its documentation at http://bit.ly/1v28Gp4.

Building a mesh

Now we will work on a task well suited for the Maya API: building a mesh from
code. You can use this system to write importers for mesh formats that Maya does
not support. In our case, we will create a simple cube using the MFnMesh function set.

Let's start by looking at what methods we will need to call to fully create a mesh, and
what data is used by each method:

e To create the mesh, use the MFnMesh.create method. It takes the
number of vertices (numvertices), number of polygons (numPolygons), an
MPointArray of the positions for each vertex (vertexaArray), an MIntArray
for the number of vertices in each polygon (polygonCounts), and finally, an
MIntArray that specifies the indices of vertices in vertexArray that are part
of each polygon (polygonConnects). polygonConnects is best thought of
as a list of tuples that define the vertex indices for each polygon, except all
chained together into one list.

[232]

http://bit.ly/1v28Gp4

Chapter 7

e To set the vertex UVs, use the MFnMesh . setUVs method, which takes
an MFloatArray of U coordinates (uArray) and an MFloatArray of V
coordinates (vArray) for each vertex. This data could be passed in
as part of the call to MFnMesh. create, but we'll call it separately to
concentrate on one thing at a time.

* To set the polygon UVs, use the MFnMesh. assignUvs method. It takes
in the same polygonCounts and polygonConnects we calculated for
the call to the MFnMesh. create method. The assignuvs method maps
the actual vertex UVs to the mesh. If you want more information on
this admittedly complex topic, see the Maya API Reference. This sort
of complexity is not uncommon in the APL.

e (Call the MFnMesh.updateSurface method when the mesh is built. It will
signal to Maya that the mesh has changed and needs to be redrawn.

e We'll deal with mesh normals in the next section.

It's important to remember that all of the arrays and arguments used in the functions
in the preceding example match up. The length of numvertices is equal to the length
of vertexArray, and the length of uarray is equal to the length of vArray. That said,
you may already be aware that the number of vertices in a mesh may not correspond
to the number of UVs or normals. A single vertex can have as many distinct normals
or UVs as it has faces it is a part of. For example, each vertex in a cube can have zero
to four normals and UVs. And of course, any mesh can have multiple UV sets! In this
example, each vertex is going to have one UV coordinate and normal because each
face in the cube will be a separate polygon.

Now that we have some idea of what we need to call and what we need to pass in,
let's define our example data. We will keep it simple and create a cube with non-
welded vertices and a UV layout where all faces take the entire UV space.

We are going to use the Python feature of list multiplication to create some data
instead of typing duplicate data out. We can see list multiplication at work in the
following example:

>>> [(0, 1)] * 2
[(o, 1), (0, 1]

The value inside of the list is repeated the specified number of times into a new list.
As a note of caution, it is the reference to the value, and not the value itself, that is
copied. This can produce some strange results if the value being repeated is mutable,
as shown in the following example:

>>> value = [1]
>>> newlist = [value] * 2

[233]

Taming the Maya API

>>> newlist

[[11, [111

>>> newlist [0] .append('a')
>>> newlist

({1, ra'l, [1, ra'll

Be careful when using list multiplication with mutable values.

Let's go ahead and use list multiplication to set up some data for our mesh.
We'll create a list of XYZ position tuples, a list of UV coordinate tuples, a list
of polygon counts, and a list defining the vertices for each face.

meshcreate.py
from maya import OpenMaya
import pymel.core as pmc

vert positions = [
(2, 1, 1), (1, -1, 1), (-1, -1, 1), (-1, 1, 1), #front
(2, 1, 1), (1, -1, 1), (1, -1, -1), (1, 1, -1), #right
(t, 1, -1y, (2, -1, -1), (-1, -1, -1), (-1, 1, -1), #back
(-, 1, 1), (-1, -1, 1), (-1, -1, -1), (-1, 1, -1), #left
(1, 1, 1), (1, 1, -1), (-1, 1, -1), (-1, 1, 1), #top
(1, -1, 1), (1, -1, -1), (-1, -1, -1), (-1, -1, 1), #bottom

]

all faces have same UVs
Vert_uVS = [(ol o)l (ol 1)1 (11 1)1 (11 0)] * 6
poly counts = [4] * 6 #Six quad faces

poly connections = [
3, 2, 1, 0O,
4, 5, 6, 7,

8, 9, 10, 11,

15, 14, 13, 12,

le6, 17, 18, 19,

23, 22, 21, 20
1

The order of the indices in poly connections controls the way the faces of the cube
will be created. If you use a different order, you can end up with faces pointing in the

wrong direction.

[234]

Chapter 7

Next, use the Python data to fill up the OpenMaya array objects we will use to
create the mesh. Since all we are doing is projecting our Python data structure into
an OpenMaya data structure, we can abstract the problem out into a single helper
function that turns a Python list into an OpenMaya array:

def py to array(values, marray type, projection=None): #(1)

result = marray type() #(2)
for v in values: #(3)

newv = v

if projection is not None:

newv = projection(v)

result.append (newv) #(4)

return result #(5)

def tuple to mpoint(p): #(6)
return OpenMaya.MPoint (p[0], pl1l], pl[2])

#(7)
vert pos_array = py_ to array(
vert positions,
OpenMaya.MPointArray,
tuple to mpoint)
poly counts_array = py to array(
poly counts, OpenMaya.MIntArray)
poly conns array = py to_array(
poly connections, OpenMaya.MIntArray)

Let's go through the preceding code in more detail:

1. Create the helper function to convert a Python list (values) into an OpenMaya
array of a certain type specified by the marray_type parameter. We can pass in
an optional projection function (projection) to apply to each item in the list.

Create a new instance of the OpenMaya array.

Iterate through each Python item, and apply projection to it if supplied.
Append the value to the OpenMaya array.

Return the OpenMaya array and exit the helper function.

AN N

Vertex positions need to be converted from tuples into maya . OpenMaya.
MPoint instances, so create the tuple to mpoint function to do it.

7. Convert the vertex positions, polygon counts, and polygon connections to
OpenMaya arrays. The vertex positions use the tuple_to_mpoint function
as the projection when converting the Python list into an OpenMaya array.

[235]

Taming the Maya API

We also need to convert our pairs of UV coordinates into a list of U and list of V
coordinates. Python has the built-in ZIP function which does the opposite of what
we want, converting two separate lists into a list of pairs. We can get the desired
behavior by passing in our list of pairs with a * symbol, which passes each pair as
its own sequence and essentially unzips pairs into individual lists. The following
demonstrates the zipping and unzipping behavior.

>>> numbers = (1, 2)

>>> letters = ('a', 'b')

>>> zipped = zip(numbers, letters)
>>> print zipped

[((x, 'a"), (2, 'b")]

>>> unzipped = zip (*zipped)

>>> print unzipped

[((1, 23, (ta', 'b")]

>>> unzipped[0] == numbers
True

>>> unzipped[1l] == letters
True

I love the name "zip" as the function works just like a jacket zipper: it zips n separate
strands into one, or unzips a unified strand into n separate ones. Let's use the zip
function to unzip our UV coordinates into two separate OpenMaya arrays.

ulist, vlist = zip(*vert uvs)
uarray = py to_array(ulist, OpenMaya.MFloatArray)
varray = py to_array(vlist, OpenMaya.MFloatArray)

The need to zip, unzip, and convert data between Python sequences and OpenMaya
arrays is not uncommon. It helps to be comfortable with it and have convenience
functions available.

Now that we have all of our data into an OpenMaya compatible form, we can use the
MFnMesh calls to create our mesh.

mesh = OpenMaya.MFnMesh () #(1)
mesh.create (#(2)
len(vert positions),
len(poly counts),
vert_ _pos_array,
poly counts_array,
poly conns_array
)
mesh.setUVs (uarray, varray) #(3)
mesh.assignUVs (poly counts_array, poly conns_array) #(4)

[236]

Chapter 7

mesh.updateSurface () #(5)

pmc.sets (
'initialShadingGroup',
edit=True, forceElement=mesh.name()) #(6)

Let's walk over the preceding code:

1.

Create a new MFnMesh instance with no arguments. It does not represent any
underlying Maya object.

Create an actual mesh object using the MFnMesh. create method. Pass in the
OpenMaya data we previously created. The MFnMesh instance now refers to
the newly-created underlying object.

Use the MFnMesh. setUVs method to set the vertex UVs.

Use the MFnMesh. assignUvs method to assign UVs to the geometry. One
would expect a single call for UV setup, but as we are working at the low
level of the Maya API, we have to deal with more complexity.

Call MFnMesh.updatesurface to tell Maya the mesh has changed and needs
to be redrawn.

Use PyMEL to assign the default shader to the new mesh. Just because we
are creating a mesh with the Maya Python API does not mean we can only
use the API. It can save time to use scripting where it is more appropriate.

Running the preceding code will create a cube as shown in the following figure:

We will continue iterating on this cube in the next section where we deal with
mesh normals.

[237]

Taming the Maya API

Setting mesh normals

The shading of the cube we created in the previous section looks flat. That is, the
lighting between polygons is not interpolated, and the surface receives light from
the direction in which it points. The faces of the polygons are all planar, and no
vertices are welded, which results in the flat-shaded appearance. If we had created
a cube with eight vertices instead of 24, with multiple faces sharing the same vertex,
the shading would look smooth. In this section, we will override the normals on

the mesh so it looks smooth, even though the geometry will not change otherwise.
A similar activity could be done to make the normals of an eight-vertex cube,
which looks smooth by default, look flat.

As previously mentioned, a single mesh vertex can have as many normals as it has
polygons that include the vertex. The same is true for the vertex's UVs. Long ago,
this was a memory concern, so 3D applications devised clever ways of working
with normals to save memory. As memory pressures disappeared, less efficient but
simpler patterns cam into use. The old mechanisms were left in, so 3D applications
often have multiple ways of working with normals.

The preferred way of working with normals is by setting arbitrary vertex normals.
Maya calls this feature per-vertex per-polygon normals, or in some cases, per-vertex
per-face normals. In other words, it is identifying the normal of a vertex based on a
face. If you are dealing with welded and smooth geometry, where each vertex only
has one normal, you can use the shared normals Maya uses by default.

We will call the MFnMesh . setFaceVertexNormal method for each vertex with the
normal, face ID, and vertex ID. The most difficult part of this is writing a function
to convert our existing data into an association between face ID, vertex ID, and
normal. We can derive the vertex normal from the vertex position by normalizing
the position, which will result in smoothly interpolated shading.

We will use the built-in enumerate function to help convert our data. The
enumerate function allows us to iterate over a sequence and get the index of
each item in the sequence and the item itself. Without enumerate we would
need to resort to the following;:

>>> chars = 'ab'
>>> for i in range(len(chars)) :
¢ = chars[i]
print 'Item %s is %r' % (i, <)
Item 0 is 'a'
Item 1 is 'b!

[238]

Chapter 7

With enumerate, we can simplify the preceding loop:

>>> for i, ¢ in enumerate (chars) :
print 'Item %s 1is %r' % (i, c)
Item 0 is 'a'

Item 1 is 'b!'
Notice we no longer need the ¢ = chars[i] line or the range (1len(chars)) call.

We can get the mapping of face ID to vertex ID and normal with the following code:

def get normals data() :
result = {}
offset = 0
for i, pcnt in enumerate (poly counts) :
vertInds = poly connections[offset:offset + pcnt]
positions = [vert positions[vind] for vind in vertInds]
normals = [OpenMaya.MVector (p[0], pl[1l], pl[2]) .normal ()
for p in positions]
result[i] = (vertInds, normals)
offset += pcnt
return result
face to vert inds and normals = get normals data()

The face_to_vert_ inds_and_normals variable is a complicated data structure.
The key is the face index. The value is a two-item tuple. The first item is a list of
the indices of each vertex in the polygon. The second item is a corresponding list
of the normal of each vertex in the polygon. Or more explicitly, in pseudocode:

face to vert inds and normals =

face0_id: [
[vert0 index, vertl index, vert2 index],
[vert0 norm, vertl norm, vert2 norm]

1,

facel id: [
[vertl index, vert2 index, vert3 index],
[vertl norm, vert2 norm, vert3 norm]

] ’

[239]

Taming the Maya API

Now that we have this data, we can iterate over it, calling the MFnMesh.
setFaceVertexNormal method which each normal, face index, and vertex index.
I've highlighted the changes in the following code:

mesh = OpenMaya.MFnMesh ()
mesh.create (
len(vert positions),
len(poly counts),
vert pos_array,
poly counts_array,
poly conns_array
)
mesh.setUVs (uarray, varray)
mesh.assignUVs (poly counts array, poly conns_ array)

items = face to vert inds and normals.items()
for faceInd, (vertInds, norms) in items:
for vind, normal in zip(vertInds, norms):
mesh.setFaceVertexNormal (normal, faceInd, wvind)

mesh.updateSurface ()
pmc. sets (
'initialShadingGroup',
edit=True, forceElement=mesh.name())

After running this code, a new cube should be created with smooth shading. If you
try selecting a face and moving it, you'll see every face is still detached.

[240]

Chapter 7

Using MScriptUtil to call a method

In certain cases, the Maya API is fundamentally incompatible with Python. Some
API functions take arguments that are passed by reference. The C++ API can do
something like the following pseudocode.

> value = False;

> Print (value) ;
False

> MakeTrue (&value) ;
> Print (value) ;
True

Notice how we never set value = True in our code, yet value is set to True at the
end. The MakeTrue function is able to change the underlying value of the value
variable, which is passed by reference.

This is impossible to do in Python. A function cannot change the value of a variable
in this manner. However, this pattern is common in the Maya API, and we need to
use the MScriptUtil class to support it.

I will briefly cover a basic use of the MScriptUtil class. It is a real pain to use and is
being phased out with the Maya Python API 2.0. However, it is still necessary to use
and no coverage of the Maya Python API would be complete without demonstrating
this horror.

In the following example, we get the degrees of freedom of a joint. This will involve
creating a new joint through the API, and using MScriptUtil to get the degrees
of freedom:

>>> from maya import OpenMaya, OpenMayaAnim

>>> joint = OpenMayaAnim.MFnIkJoint () #(1)

>>> joint.create ()

>>> joint.setDegreesOfFreedom(True, False, True) #(2)

>>> utils = [OpenMaya.MScriptUtil() for su in range(3)] #(3)
>>> ptrs = [su.asBoolPtr() for su in utils] #(4)

>>> joint.getDegreesOfFreedom(*ptrs) #(5)

>>> [OpenMaya.MScriptUtil.getBool (ptr) for ptr in ptrs] #(6)
[1, 0, 1]

[241]

Taming the Maya API

Let's walk over the preceding code line by line:

1. Inorder to create a joint through the Maya Python AP]I, instantiate a
new, empty MFnIkJoint instance and call its create method to create
an underlying Maya node.

2. Call the MFnIkJoint.setDegreesOfFreedom method to change the degrees
of freedom from the default values. This allows us to verify we are getting
the correct values at the end of the example script.

3. Create a list of three MScriptUtil instances. They correspond to the x, y,
and z axes of freedom. We use them on the next line.

4. Create a list of three pointers by calling the MScriptUtil, asBoolPtr ()
method on each MScriptUtil instance. The pointers are not Boolean
values themselves, but point to an underlying Boolean value Maya will
mutate. Each pointer will be filled with whether the joint is free to move
in a particular axis.

5. Pass the pointers to the MFnIkJoint .getDegreesOfFreedom method.
The arguments of this method are passed by reference, as indicated by the
"&" character next to each argument name in the method's documentation.
The method does not return anything. It mutates the underlying Boolean
values of the pointers passed into it.

6. Get the underlying pointer values by calling the MScriptUtil.getBool
method. Unfortunately getBool returns an integer and not an actual Boolean.
Verify that the resultis [1, 0, 1].This resultcorresponds to the [True,
False, True] that the degrees of freedom were set to in point 2.

Astute readers may notice that creating the MScriptUtil
instances and asBoolPtr calls can be combined into a single

Al list comprehension. This can result in bugs due to Maya's

= memory management. I would suggest you always keep an

Q explicit reference to the original MScriptUtil instance as long
as you have any references to a pointer created by it. Combining
the lines where we set the utils and ptrs variables may result
in a crash, aresultof [1, 1, 11, or the correct behavior.

At this point, we're almost done with our tour of what the Maya Python API has to
offer. Throughout these examples, you may have said to yourself many times, "I can
do this through MEL / Maya commands / PyMEL". We will learn how to set up
callbacks using the Maya Python API before exploring this question.

[242]

Chapter 7

Using OpenMaya for callbacks

There are some areas where it is infeasible to use Maya commands. Callbacks are
one such area. We can use script jobs, but for reasons laid out in Chapter 5, Building
Graphical User Interfaces for Maya, we are not going to. Script jobs are unreliable,
brittle, difficult to use, and above all, very limited. Maya API callbacks are much
more straightforward and predictable in their design and use.

In this example, we are going to register a callback to be invoked when the name
of a node changes. In order to make life easier, we're going to allow the callback to
work with PyNodes, rather than instances of Mobject or types from the Maya APIL.
The fact that the callbacks use the Maya Python API under the hood will be totally
hidden to the caller.

The web of Maya API callbacks can be a bit difficult to navigate. Start with the
OpenMaya .MMessage type and look for the callback you need on the appropriate
subclass. In our case, we need the OpenMaya . MNodeMessage subclass with its
addNameChangedCallback method.

Two things to know about all callbacks in OpenMaya are:

* Adding a callback returns an ID which should be passed to the MMessage.
removeCallback method to remove the callback.

* Nearly all callbacks take an optional clientData parameter you should just
ignore. There is no use for it in Python. We represent it by the underscore
() parameter in the callbacks, and do not pass it in when we call the "add
callback" methods.

We can start by stubbing out the functions to add and remove the callback. Writing
good docstrings will help us figure out exactly what we need to do:

#callbacks.py
from maya import OpenMaya
import pymel.core as pmc

def addNameChangedCallback(callback, pynode=None) :
"""Registers a callback so that
“callback (pynode, oldname, newname) 1is called when
“pynode”'s name changes.
If “pynode” is None, invoke the callback for every
name change.

[243]

Taming the Maya API

Return the callback ID. Hold onto this if you will need to
remove the callback.

def removeNameChangedCallback (callbackId) :
"""Removes a callback based on its ID."""

The removeNameChangedCallback function is straightforward enough to implement,
so let's go ahead and do so. It simply calls the MNodeMessage . removeCallback
function with a given callback ID:

def removeNameChangedCallback (callbackId) :
OpenMaya .MNodeMessage .removeCallback (callbackId)

Adding support for registering the callback is more complex. We will use what we

learned earlier in this chapter to convert PyNodes and MObjects back and forth. We
also use a closure for our callback, so we can easily map between the actual callback
(using OpenMaya objects) and the user-supplied PyMEL callback (using PyNodes):

def addNameChangedCallback(callback, pynode=None) :
def omcallback (mobject, oldname,): #(1)
newname = OpenMaya.MFnDependencyNode (mobject) .name ()
changedPynode = pmc.PyNode (newname) #(2)
Ignore name changes for manipulators and stuff
that have no scene objects
if not _isvalidnode (changedPynode) : #(3)
return
callback (changedPynode, oldname, newname) # (4)

if pynode is None: #(5)
listenTo = OpenMaya.MObject ()

else:
listenTo = pynode. apimobject ()

return OpenMaya.MNodeMessage.addNameChangedCallback (#(6)
listenTo, omcallback)

def isvalidnode (pynode) :
try:
bool (pynode)
return True
except KeyError:
return False

[244]

Chapter 7

There are a lot of new concepts in the preceding code, so let's go over it in more detail:

1.

Inside the addNameChangedCallback function, define a closure which will

be the actual function invoked by Maya when a node's name changes. It takes
the MObject that has changed, its old name, and the clientData parameter
that can be ignored.

Inside the closure, convert the node that has changed into a PyNode.

Check if the changed node is a valid node with the _isvalidnode function.
If it is not valid, return early and do not call the supplied callback.

If the node is valid, invoke the supplied callback with the pyNode, old name,
and new name. Exit the closure.

If the caller of addNameChangedCallback does not supply a PyNode to
listen to, use an empty MObject instance to listen to all name changes.
Otherwise, get the Mobject that underlies the PyNode by calling its
__apimobject () method.

Install the callback into Maya by calling the MNodeMessage.
addNameChangedCallback method with the MObject to listen to
and the closure.

Let's see the callback behavior in action:

>>>

>>>
>>>
>>>
>>>
CB:
>>>
>>>
>>>
CB:
>>>
CB:
CB:
>>>

>>>

def cb(n, old, new): #(1)

print 'CB: %r, %r, %r' % (n, old, new)
watched = pmc.joint () #(2)
unwatched = pmc.joint ()
cbidl = addNameChangedCallback (cb, watched) #(3)
watched.rename ('spam') #(4)

nt.Joint (u'spam'), u'jointl', u'spam'
unwatched.rename ('eggs') #(5)

cbid2 = addNameChangedCallback (cb) #(6)
unwatched.rename ('eggs2') #(7)

nt.Joint (u'eggs2'), u'eggs', u'eggs2'
watched.rename ('spam2') #(8)

nt.Joint (u'spam2'), u'spam', u'spam2'
nt.Joint (u'spam2'), u'spam', u'spam2'
removeNameChangedCallback (cbid2) #(9)
unwatched.rename ('eggs3') #(10)

[245]

Taming the Maya API

Let's walk through the preceding demonstration line by line to see how callbacks work:

1. Define the callback function, which just prints its arguments.

2. Create the two joints. The names of these joints will be changed to
demonstrate the callback behavior.

Register a callback to fire when the name of the watched joint changes.
Rename the watched joint. The callback fired.
Rename the unwatched joint. The callback is not fired.

Register the callback function to listen for name changes to all nodes.

NS e ®

Rename the unwatched joint again. The callback function is invoked once
due to it being registered for all node name changes.

8. Rename the watched joint again. The callback fires twice: once for the
callback registered specifically for the watched joint, and once for the
callback registered for all nodes.

9. Remove the callback registered for all nodes.

10. Rename the unwatched joint yet again. No callback is fired because the
callback watching all nodes was just removed.

A final thing to keep in mind when using callbacks is that they may be fired at
seemingly bizarre times. Don't be shocked the first time an unrelated callback
is invoked when you switch active views, render the scene, or delete a node.
You must design your code to protect against being called at the wrong time.

Comparing Maya Python APl and PyMEL

The main benefit of using the Maya APl is clearly the greater power it gives you.
Many things are not possible through scripting, and being able to access the API
from Python gives you the best of both worlds. We saw this demonstrated several
times, such as where we used the API to build a mesh and PyMEL to assign a
shader, and where we hid usage of API callbacks behind a function that works
with PyMEL arguments.

There is another benefit of the Maya API, however. It allows you to approach Maya
programming from the bottom up, rather than the top down. For example, to build

a mesh with the Maya API requires a relatively small amount of Maya knowledge
(start with the MFnMesh reference page and learn from there), but a significant amount
of programming skill, such as the code to derive vertex normals. OpenMaya is great
for addressing foundational problems.

[246]

Chapter 7

Building a mesh is certainly possible through script. In fact there are probably dozens
of ways you can do it! But instead of working around a unified concept- the MFnMesh-
you are working from many different angles: commands for creating the mesh, UVs,
and normals are not unified except by a user's familiarity with them. It's quite possible
for programmers who have little knowledge of Maya to write passable libraries,

such as exporters or importers, remarkably quickly with the API. This is because the
OpenMaya concepts are so universal and similar to the 3D concepts they may be used
to. The scripting and command concepts, in contrast, are very specific to Maya and
require some amount of context and familiarity with the program. We saw in Chapter 2,
Writing Composable Code, how convoluted some of the commands have become!

Oftentimes the reason I recommend the Maya Python API is similar to why I
recommend PyMEL over maya.cmds and PySide over the Maya Ul commands: to
improve the quality of the rest of the Python code. Python code that uses OpenMaya
can often be more straightforward and readable, especially if the alternative is many
script command calls with obscure flags and values. However, code using the API is
usually more verbose, in the end requiring more lines of code, though many of those
lines can be put in clear, well documented, and tested libraries. Experiment and
become skilled with the two, and choose the approach that allows you to write the
most appropriate code.

Oh, and it's worth pointing out that the Maya Python API is usually faster than
either PYMEL or maya . cmds. That isn't always the case, though. Sometimes PyMEL
wraps the API so nicely that it can save you a bunch of work, or you can make a
single script call instead of thousands of API calls. But if you find that commands
become a performance bottleneck, you can try porting your code to use the Maya
Python API as a last resort.

Creating a Maya Python plugin

Our tour of the Maya Python API continues with probably its most common use in
the wild: creating a Maya plugin with Python. In fact, the entirety of the next chapter
is spent working with Maya Python plugins in novel ways. We should have a good
understanding of how plugins work before ending our API tour, so the remainder

of this chapter will be focused on creating a Maya command plugin with Python.
When called, the command will play a sound.

There are several plugin types supported by Maya. Plugin types are denoted by
the Mpx prefix and are inside the maya . OpenMayaMPx namespace. You can look at
the Maya API Reference to get an idea of what's available. All plugins work with
basically the same concepts, which we will cover in this chapter. Custom plugins
are handled by subclassing the appropriate Maya plugin type, and registration is
handled by the openMayaMPx .MFnPlugin class.

[247]

Taming the Maya API

In this section, we will create a command plugin by subclassing the maya.
OpenMayaMPx . MPxCommand base class. Command plugins are designed to expose
functionality that can be called from script just like native MEL commands. They are
becoming less popular because they don't offer much over a regular Python script,
as we'll see. Python allows us to access both script commands and the Maya Python
API at the same time, so it's much easier to write everything in Python than it is to
write C++ or Python commands that are then called from a separate script.

Even though command plugins are not very popular anymore, they provide

a straightforward way of becoming familiar with Maya's plugin system. This
knowledge will be essential when we tackle Dependency Graph plugins based on
MPxNode in the next chapter, Chapter 8, Unleashing the Maya API through Python.

The life of a Python plugin

All Maya Python plugins behave in roughly the same way. In fact, this sort of unified
interface is a fundamental feature of any plugin system. In this section, we will start
by defining what a plugin is. Then we will learn how to find, load, initialize, and
register it. Finally, we will see how to unload, uninitialize, and deregister it.

A single plugin consists of a plugin module and any number of plugin types.
For example, you may have a plugin module named exporterplugin.py which
contains the commands (plugin types) exportSelected and exportall. All of
these together can be collectively referred to as the exporterplugin plugin.

A Python plugin is defined by a . py file placed in one of the directories in the
MAYA PLUG_IN_ PATH environment variable. All Python files placed there will
show up in the Plugin Manager window.

Plugins can be loaded through the pymel . core.loadPlugin function, from the
Plugin Manager window, or automatically loaded when Maya starts up if the
plugin is set to automatically load. The . py suffix must be specified when loading
or unloading Python plugins through script. C++ (.m11) plugins can be loaded
and unloaded with or without the .m11 suffix.

When the plugin is loaded by Maya, whether through the GUI, script, or automatic
loading on startup, it is initialized. Maya automatically calls the module-level
initializePlugin function. The initializePlugin function takes in an MObject
instance which is used to construct an MFnPlugin instance.

[248]

Chapter 7

Methods on the MFnPlugin instance with the register prefix are called perform
plugin type registration. Registration of types that store some data in the scene, such
as MPxNode plugins, usually require a unique identifier called a type ID. We'll learn
more about type IDs in Chapter 8, Unleashing the Maya API through Python. Plugins
types that do not store data, such as MPxCommand plugins, are usually just identified
by a name. Nearly all plugin registration includes a creator function that is used to
create an instance of the actual plugin type.

A plugin can be unloaded through the pymel.core.unloadPlugin function.
Again, the . py suffix must be specified when loading or unloading Python
plugins through script.

When a plugin is unloaded, it is uninitialized and its plugin types are deregistered.
This works the same as plugin initialization and registration; the uninitializePlugin
module-level function and deregister-prefixed MFnPlugin methods are used.

Be aware that the deregistration method is not always named the same as the
registration method. For example, plugins registered through the MFnplugin.
registerTransform method are deregistered through the MFnPlugin.
deregisterNode method.

I should also warn you that that the uninitializePlugin function is not called
when Maya exits. See the MFnpPlugin API reference page for instructions on how
to handle plugins that must run some sort of cleanup before Maya exits.

Once a plugin is initialized and registered, it can actually be used. Used can mean
many different things and depends wholly on the type of plugin.

In this section, we went over the life cycle of a Maya plugin in the abstract. In the
next four sections, we will build a command plugin to provide a concrete example.

Creating the sound player library

We will create a command plugin to play a sound in Maya. Before creating the
plugin, however, we will write a simple Python library that plays a sound using
the QtGui . QSound class. Place the following code into a C: \mayapybook\pylib\
playsound.py file:

import os
from gtshim import QtGui

GOBBLE = os.path.join(os.path.dirname(_ file), 'gobble.wav')
GORILLA = os.path.join(os.path.dirname(_ file_), 'gorilla.wav')

[249]

Taming the Maya API

def play sound(wav=GOBBLE) :
QtGui.QSound.play (wav)

The preceding code defines the paths to a couple audio files, as well as a play_sound
function which takes in the path to a file and plays it uses PySide.

You can find gobble.wav and gorilla.wav alongside the code samples for this
chapter. You can also use your own .wav files. Place them next to the playsound.py
file in the C: \mayapybook\pylib development root. The gt shim library was created
in Chapter 5, Building Graphical User Interfaces for Maya.

The playsound library will do the actual sound playing. Breaking apart generic
Python code, like we have here, from Maya-specific plugin code, as we'll write next,
is a good practice.

Creating the plugin file

We will need to create the Python plugin file in a location Maya recognizes as a
plugin directory. All of the directories on the MAYA PLUG IN_PATH environment
variable are searched for plugins. You can see your available options by running
the following code from a mayapy interpreter:

>>> import pymel.core, os
>>> for p in os.getenv('MAYA PLUG_IN_ PATH') .split (os.pathsep) :
print p

On my OS X machine, this prints out a number of suitable directories, including;:

/Users/rgalanakis/Library/Preferences/Autodesk/maya/plug-ins
/Users/Shared/Autodesk/maya/plug-ins

Choose a location and create a file named playsoundplugin.py. Open it up and
write the following code:

from maya import OpenMayaMPx # (1)
import playsound

class SoundPlayer (OpenMayaMPx.MPxCommand) : # (2)
def dolIt(self, args): #(3)
playsound.play sound(playsound.GOBBLE)

def create plugin(): #(4)
return OpenMayaMPx.asMPxPtr (SoundPlayer())

plugin name = 'playSound' #(5)

[250]

Chapter 7

def

def

def

_toplugin(mobject) : #(6)
return OpenMayaMPx.MFnPlugin (
mobject, 'Marcus Reynir', '0.01'")

initializePlugin (mobject) : #(7)
plugin = toplugin(mobject)
plugin.registerCommand (plugin name, create plugin)

uninitializePlugin (mobject) : #(8)
plugin = toplugin(mobject)
plugin.deregisterCommand (plugin name)

This is all the code we need for a simple version of our sound player plugin. It is very
dense, though, so let's go through it in detail.

1.
2.

Import maya . OpenMayaMpPx module and the playsound library we just built.

Define the soundplayer class which inherits from the openMayaMPx.
MPxCommand class. Maya plugins are subclasses of plugin base classes.
A command plugin is a subclass of the MPxCommand class.

Command plugins must override the MPxCommand.doIt method.
The soundPlayer.doIt just calls the playsound.play sound function.
Ignore the args parameter to the dort method for now.

The create plugin function is known as a creator function and it is used
during node initialization. A creator function creates a new instance of

the plugin type (SoundHorn) and passes it to the OpenMayaMPx . asMPxPtr
function. The call to OpenMayaMpx . asMPxPtr is very important. It instructs
Maya to manage the memory of the newly created instance, rather than
Python. Python would immediately garbage collect the newly instantiated
plugin and havoc would ensue. Every plugin registration requires a
creator function, and every creator function looks exactly the same:

a call to asMPxPtr with a newly created instance of the plugin type.

Define the plugin name. For a command plugin, the name is what the
command is called in Maya. For example, pmc . playSound will invoke
our command plugin once it is registered.

Define a helper to convert an Mobject to an MFnPlugin instance.

Define a function to initialize the plugin. It converts the passed MObject
into an MFnPlugin instance, and then calls its registerCommand method.
The method makes the command available to Maya.

[251]

Taming the Maya API

8. Define a function to uninitialize the plugin. It converts the passed
MObject into an MFnPlugin instance, and then calls the MFnPlugin.
deregisterCommand method. The method means the command can
no longer be used by Maya.

We can try out our plugin in mayapy or the Script Editor:

import time

import pymel.core as pmc
pmc.loadPlugin ('playsoundplugin.py')
pmc.playSound ()

time.sleep(2)

pmc.unloadPlugin ('playsoundplugin.py"')

You should hear a turkey gobble sound play. If you do not, Qt may not have
found the .wav file, so make sure it is next to the playsound. py file, and not
the playsoundplugin.py file.

Reloading plugins

Plugins are not normal Python modules. They aren't imported, so they cannot

be reloaded through the reload function. If there are changes we want to pick up,
the plugin needs to be unloaded and loaded again. This can be done by calling the
pymel.core.loadPluginanipymel.core.unloadPluginfuncﬁonsOrlmdngthe
Plugin Manager window.

Like any other Maya plugin, there cannot be any references to the plugin when it
is unloaded. This is usually only a problem for plugins that store data in the scene
(such as node plugins), though you may need to clear your Undo Queue and/or
Construction History to allow Maya to unload certain types of plugins.

Adding a command flag

Finally, we will add a flag to the playSound command so a caller can choose
a sound to play. The new contents of playsoundplugin. py follow, with the
changes highlighted:

from maya import OpenMayaMPx, OpenMaya
import playsound

wav_flag short = '-w' #(1)
wav_flag long = '-wavname'

[252]

Chapter 7

WAVS = { #(2)
'gobble': playsound.GOBBLE,
'roar': playsound.GORILLA,

class SoundPlayer (OpenMayaMPx .MPxCommand) :
def doIt(self, args):

parser = OpenMaya.MArgParser (self.syntax(), args) #(3)

filename = WAVS['gobble']l #(4)

if parser.isFlagSet(wav_flag short):
key = parser.flagArgumentString(wav_ flag short, 0)
filename = WAVS [key]

playsound.play sound(filename) #(5)

def create syntax(): #(6)
syn = OpenMaya.MSyntax()
syn.addFlag(
wav_flag short, wav _flag long, OpenMaya.MSyntax.kString)
return syn

def create plugin():
return OpenMayaMPx.asMPxPtr (SoundPlayer())

plugin name = 'playSound'

def toplugin(mobject) :
return OpenMayaMPx.MFnPlugin (
mobject, 'Marcus Reynir', '0.01')

def initializePlugin (mobject) :
plugin = toplugin(mobject)
plugin.registerCommand (
plugin name, create plugin, create syntax) #(7)

def uninitializePlugin (mobject) :
plugin = toplugin(mobject)
plugin.deregisterCommand (plugin name)

[253]

Taming the Maya API

Let's go through the differences between the previous version and this new version
with flag support. Adding flag support is not trivial and requires learning a number
of new, confusing API concepts:

1.

Define the flags. The flag -w is the short name and -wavname is the long
name. Short names must be less than four characters and long names must be
greater than three. If your names do not conform, you will get a mysterious
RuntimeError: You are not licensed to use the "<command name>"
command error when using the plugin.

Create a dictionary that will map flag arguments to . wav files. This is just a
convenient mapping for callers. You may also want to provide -f and -file
flags if you want the caller to be able to supply a full path to a . wav file.

Inside of the do1t method, create an OpenMaya .MSyntax instance by calling
the self.syntax () method. Create a new OpenMaya.MArgParser instance

using the MSyntax instance. Refer to point 6 for more information about the
self.syntax () method.

Set the default key to 'gobble', and if the user supplies a flag value, parse
that.

At the end of the do1t method, play the .wav file specified by the key.

The create syntax function returns an MSyntax instance that is used
to parse arguments from the args parameter passed into the command's
dort method. The syntax instance is retrieved through the MPxCommand.
syntax () method, which was used in point 3. The create syntax
function is associated with the plugin type when calling the MFnPlugin.
registerCommand method, as shown in point 7.

Pass the create syntax method into the MFnPlugin.registerCommand
method when registering the plugin type.

Let's try out the plugin again using mayapy or the Script Editor. Make sure the
changes have been picked up by unloading and loading the plugin, or restarting
Maya. In the following example, we call the playSound command with no argument
to play the turkey sound, and then with an argument to play the gorilla sound.

import time

pmc.loadPlugin ('playsoundplugin.py')

pmc.playSound ()

time.sleep(2)

pmc.playSound (wavname="'gorilla')

time.sleep(2)

pmc.unloadPlugin ('playsoundplugin.py"')

[254]

Chapter 7

You should hear a turkey gobbling, and then a gorilla roaring. That completes the
playSound command plugin. Before we wrap things up, however, we will see why
plugins like this are largely unnecessary.

Comparing the OpenMaya and scripting
solutions

I mentioned earlier there is a reduced need for command plugins. The example of
adding a flag should demonstrate why. The design makes sense in a C++ world,
but is totally unnecessary in Python. We could keep all the same functionality
but get rid of the plugin by using the playsound library directly as shown in

the following example:

import playsound, time

playsound.play sound(playsound.GOBBLE)
time.sleep(2)

playsound.play sound(playsound.GORILLA)
time.sleep(2)

What are the main benefits of using the Python library approach over
command plugins?

* There is no plugin creation dance. Instead, just call functions directly.

* Keyword arguments are part of the language. There's no need to deal with
MArgParser Or MSyntax. Supporting a single flag using the API is complex
enough. Can you imagine how the argument parsing code for something
like the 1s command looks?

* Code is not registered ahead of time. Functions can be imported when they
are needed. This makes code more understandable. For example, if you run
across a call to pymel.core.explode somewhere, you cannot immediately
know whether it is a built-in Maya command you didn't know about, or
a command from a random plugin. If you run across a call to somelib.
explode, you know the explode function lives in the somelib module.

* Undo and redo are easier to handle. Command plugins that manipulate the
scene must be careful to support undo and redo. It is much easier to create
undo and redo blocks from script, as we did in Chapter 4, Leveraging Context
Managers and Decorators in Maya.

[255]

Taming the Maya API

Clearly there's less of a need for command plugins because it's easier to accomplish
the same as a script. I chose not to demonstrate a command that requires undo and
redo support or other advanced topics because the complexity can quickly become
overwhelming. Be aware, though, that any command plugin that manipulates the
Maya scene should provide undo and redo support. Such a plugin is included with
this book's sample code in the zerooutplugin.py file.

Using PyMEL in a plugin that loads
during startup

Maya will import plugin files that are set to auto-load very early in its startup
routine, much earlier than any user-specified startup scripts. Earlier, even, than
PyMEL. This means that the initialization of your plugin must not use (or even
import) PyMEL if it is set to auto-load.

For example, I've included part of the deferpymel.py plugin in the following code.
The rest of the code can be found with the book's examples. Notice the import
pymel.core line at the top of the file.

from maya import OpenMayaMPx
import pymel.core

... Other code here ...

def initializePlugin (mobject) :
plugin = toplugin(mobject)
plugin.registerCommand (plugin name, create plugin)

If we start Maya, set this plugin to auto-load, and restart Maya, we should see the
following in the Script Editor after Maya starts up:

// pymel.core : Updating pymel with pre-loaded plugins: deferpymel

PyMEL was loaded but it is in an incomplete state. On import, PyMEL dynamically
analyzes Maya and makes all of its commands available. This analysis happened too
early and some plugins are missing.

[256]

Chapter 7

Instead, we need to defer the importing of PyMEL until Maya is finished initializing.
We can change the imports and the initializePlugin method as follows:

from maya import cmds, OpenMayaMPx
... Other code here ...

def initializePlugin (mobject) :
plugin = toplugin(mobject)
def register():
import pymel.core as pmc
plugin.registerCommand (plugin name, create plugin)
cmds.evalDeferred(register)

First, remove the import of pymel . core from the top of the file. Instead, import the
maya .cmds module.

Inside initializePlugin, create the MFnPlugin instance as normal. Also create
a closure that does the PyMEL import and calls the plugin.registerCommand
method. Then pass the closure to the maya.cmds.evalDeferred function. This
function will invoke what is passed to it when Maya becomes idle. Fortunately,
Maya will not be idle until its startup routine has finished, at which point the
plugin can be safely registered.

If you start Maya, you should see the following output to the top panel of the Script
Editor. The output will be different depending on what other plugins you have set
to auto-load.

pymel.core : Updating pymel with pre-loaded plugins: deferpymel,
fbxmaya, objExport

This should fix our problem, though it is sometimes an inconvenient way of getting
around the restriction of not being able to import PyYMEL during plugin initialization.

Summary

In this chapter, we learned about object-oriented programming and how to use the
Maya Python API. We saw the power of inheritance and how to draw shapes into
the Maya viewport using OpenGL. Then we learned about the inner workings of
the Maya Python API bindings, how to navigate the Maya API Reference, and how
MObjects and function sets work.

[257]

Taming the Maya API

We accomplished a number of tasks with the API which demonstrated common
patterns. We used the powerful MFnMesh class to build a mesh from scratch, wrestled
with the MScriptUtil class and pass by reference pattern, and saw how OpenMaya
callbacks are used. We ended the chapter by implementing a command plugin for
playing sound.

Throughout this chapter we also saw various problems with the Maya Python API.
More and more code is being written as Python scripts instead of plugins, though
some plugin types, especially for rendering, often still belong in C++. Next, in Chapter
8, Unleashing the Maya API through Python, we will look at OpenMayaMPx . MPxNode, a
very common type of plugin to write that cannot be replaced with a simple Python
script and PyMEL. We will build a system that provides a Pythonic wrapper around
building MPxNodes so we can write elegant, Pythonic code, and we do not need to go
through the pain and boilerplate we were forced to endure in this chapter.

[258]

Unleashing the Maya
API through Python

In this chapter, we will synthesize everything we've learned so far into a module
that may change the way you think about Python and Maya programming. We will
develop a library that will allow you to create Maya plugins with minimal code in a
very Pythonic style, hiding away the complexities of working with the Maya Python
APIL It will show you how well designed and powerful both Maya and Python are,
and the beautiful things they can create together.

We'll start by building a Maya dependency graph plugin using standard API
techniques. This will demonstrate Maya's Dependency Graph concepts of input
attributes, output attributes, and the compute method. We'll look at the gotchas,
boilerplate, and complexities involved in creating a dependency graph plugin.

After that, we will learn about Python metaprogramming. We will put this knowledge
to use building the node factory module, which will eliminate the difficulties
encountered while building the first version of our plugin. We'll end with some ways
you can expand and extend the node factory.

Unleashing the Maya API through Python

Understanding Dependency Graph
plugins

The Maya API Guide's Python Learning Path help document covers the basics of
creating dependency graph plugins, which are also called node plugins for short.
You can get quite far by cargo culting (copy, pasting, and adjusting) examples
without knowing why something is done. Even if most of the explanations are in the
Maya help documents somewhere, it can be difficult to find and put it all together.
So in this section, we'll create a dependency graph plugin and explain each new topic
along the way, making sure some old ones are understood as well.

The term cargo cult programming refers to when a programmer
. uses some code without understand why or how it does what it
& does. It originates from the practice some Pacific tribes adopted
s after World War II, where they would make mock-ups of airplanes
and landing strips with the hope of bringing back the cargo planes
that visited them during the war.

A node plugin is a plugin type that inherits from the maya . OpenMayaMPx . MPxNode
Maya API class. Plugin nodes can be hooked into the Maya dependency graph,
which means their inputs and outputs can connect to the inputs and outputs of other
nodes. All of the nodes you interact with in Maya, from the transform and shape of a
polySphere, to the viewport camera, to the node representing the scene time, are all
part of Maya's dependency graph. Compare this to the command plugin we created
in Chapter 7, Taming the Maya API, which can affect the scene directly but cannot be
connected to anything.

Nodes are the molecules that make up a Maya scene. By creating our own dependency
graph plugins, we can synthesize new chemicals that mesh into the rest of Maya.

Building a simple node plugin
For our example node plugin, we'll port the Maya API Reference's C++ example

circle node to Python. The original source code for the circle node is in the
circleNode. cpp file in Maya's development kit.

The circle node is pretty simple. It outputs a sine and cosine computed from its
inputs. When connected to the X and Z translation of a transform node, the outputs
will move the transform in circle through the XZ plane, hence the name "circle node."

[260]

Chapter 8

The circle node also has three inputs which control the phase, amplitude, and
requency of the outputs:

* The scale attribute is a multiplier against the sine and cosine and controls
amplitude, or height. Without scaling, the outputs would only be between
-land 1.

* The frames attribute controls the sine and cosine's period, or length of a
cycle. A higher frames value means a slower rate of change.

* The input attribute controls the phase of the outputs. It is normally the
current frame number. For example, at frame 0, the sin is at 0. If the value
of input is 10 and frames is 20, the sine is halfway through its cycle. If the
value of input is 40 and frames is 20, the sine is back at 0.

With that description out of the way;, it's time to stub out the plugin's initialization and
registration. Add a circlernode.py file somewhere in your MAYA PLUG_IN PATH.
Refer to Chapter 7, Taming the Maya API, if you need help finding where to place the
plugin. Inside of circlernode.py, type the following code:

import math
from maya import OpenMaya, OpenMayaMPx

class Circler (OpenMayaMPx.MPxNode) : # (1)
def compute (self, *args):
pass

def create(): #(2)
return OpenMayaMPx.asMPxPtr (Circler())

def init(): #(3)
return
nodeName = 'circler' #(4)

nodeTypeID = OpenMaya.MTypeId (0x60005) #(5)

def toplugin(mobject): #(6)
return OpenMayaMPx.MFnPlugin (
mobject, 'Marcus Reynir', '0.01')

def initializePlugin (mobject): #(7)
plugin = toplugin(mobject)
plugin.registerNode (nodeName, nodeTypelID, create, init)

def uninitializePlugin (mobject) : #(8)
plugin = toplugin(mobject)
plugin.deregisterNode (nodeTypeID)

[261]

Unleashing the Maya API through Python

Most of this should be familiar from the command plugin we built in Chapter 7, Taming
the Maya API, but let's go over each distinct concept in the preceding example:

1. After importing the necessary modules, define the circler class, which
inherits from the OpenMayaMpPx . MPxNode class. The MPxNode class or one of its
subclasses must be the base class of any node plugin. Other types of plugins
inherit from different MPx-prefixed OpenMaya types. Stub out the circler.
compute method for now. We will write the code for it in a coming section.

2. Define the create function, known as the node creator. It looks and works
the same way as it does for the command plugin we built in Chapter 7,
Taming the Maya API.

3. Define the init function, known as the node initializer. We will look at the
node initializer in more detail in a coming section.

4. Define the node's name. You can create the node using this name by calling
something like pymel.core.createNode ('circler!').

Define the node's type ID. We look at type IDs in detail in the next section.

The initializePlugin and uninitializePlugin functions look like they
do for command plugins. The only difference is that they use the MFnPlugin.
registerNode and MFnPlugin.deregisterNode methods, which take
different arguments than the MFnPlugin.registerCommand and MFnPlugin.
deregisterCommand methods we used in Chapter 7, Taming the Maya API.

In the next three sections, we will go over the new concepts introduced
in the preceding breakdown: type IDs, the node initializer, and the MPxNode .
compute method.

Understanding plugin type IDs

Node plugins, along with a few other plugin types, store data in the Maya scene that

is persisted across sessions. Maya identifies the node by storing its type ID. Identifying
anode by ID is very different from simply using a name. Names can change, but even
more importantly, names can easily conflict. Imagine saving a scene that uses a custom
node, and someone else with a different node plugin with the same name loads your
scene. Because the behavior of the nodes is different, even though the name is the
same, the scene may be entirely broken, or worse, it may technically work but look
different! All because two people thought "circler" is a great name for a node.

[262]

Chapter 8

To avoid this fate, Maya has the concept of the type ID, implemented through the
MTypeID class. This class just wraps an unsigned integer, commonly referred to as a
uint. By convention, type IDs are represented in hexadecimal form, such as 0x60005
in the circle node example.

sign, can be between 0 and approximately 4 billion. We just use normal
A

A normal (signed) 32-bit integer can be between approximately -2
billion and 2 billion. An unsigned integer, lacking a positive or negative

integers in Python since it does not natively support unsigned integers.

I have absolutely no idea why it's common to use hexadecimal notation
for the unsigned integer represented by an MTypeID instance.

Autodesk has established a set of rules that should govern the choice of ID number.
A quite thorough tutorial, including most of the following information, is included
on the MTypelD page in the Maya API Reference.

Type IDs for plugins that are and will forever be internal use only can be
between 0 and ox7££££. We will use this range for this chapter.

The plugins Autodesk ships with the Maya plugin development kit use IDs
between 0x80000 and Oxfffff.

Any plugins that ever have the potential to be used outside of your tight
control should use a unique ID from Autodesk. You can reserve a block

of 256 IDs through the Autodesk Developer's Network. See the MTypeID
reference page for more details. I strongly suggest that you get a block of
type IDs reserved. You never know when your plugin will need to be used
in a new environment!

Defining inputs, outputs, and the initializer
Now that we know about type IDs, we can start building the node itself. Let's define
the inputs and outputs on the class definition as is normally done in Maya Python
API plugin examples.

class Circler (OpenMayaMPx.MPxNode) :

inputFrame = OpenMaya.MObject () # input
frequency = OpenMaya.MObject () # input
scale = OpenMaya.MObject () # input
outSine = OpenMaya.MObject () # output
outCosine = OpenMaya.MObject () # output

[263]

Unleashing the Maya API through Python

This code, though common in examples, does nothing. It is one of many C++ isms
that have infected Python plugin code. The actual code that sets up our inputs and
outputs goes into the node initializer, which we are about to build. However, for this
first example, we will not stray far from the rest of Maya's Python plugin examples,
and simply port the C++ code into Python.

Generally porting C++ code into Python generates huge code smells
M and this is no different. The ported code will look alien to the Python
Q we've been writing in the rest of the book. By the end of this chapter,
we will have a way to use Python to create Maya node plugins in a
much more pleasing fashion.

The node initializer is what sets up the node's real input and output attributes.
Again, this is a straight port from the C++ code, so it looks distinctly non-Pythonic.

def init():
nAttr = OpenMaya.MFnNumericAttribute () #(1)
kFloat = OpenMaya.MFnNumericData.kFloat

#(2) Setup the input attributes

Circler.input = nAttr.create('input', 'in', kFloat, 0.0)
nAttr.setStorable (True)

Circler.scale = nAttr.create('scale', 'sc', kFloat, 10.0)
nAttr.setStorable (True)

Circler.frames = nAttr.create('frames', 'fr', kFloat, 48.0)

nAttr.setStorable (True)

#(3) Setup the output attributes

Circler.outSine = nAttr.create('outSine', 'so', kFloat, 0.0)
nAttr.setWritable (False)

nAttr.setStorable (False)

Circler.outCosine = nAttr.create(

'outCosine', 'co', kFloat, 0.0)
nAttr.setWritable (False)
nAttr.setStorable (False)

#(4) Add the attributes to the node
Circler.addAttribute (Circler.input)
Circler.addAttribute (
Circler.addAttribute (Circler.frames)
Circler.addAttribute (

Circler.scale)

Circler.outSine)

[264]

Chapter 8

Circler.addAttribute (Circler.outCosine)

#(5) Set the attribute dependencies

Circler.attributeAffects (Circler.input, Circler.outSine)
Circler.attributeAffects
Circler.attributeAffects

(Circler.input, Circler.outCosine)
(
Circler.attributeAffects (Circler.scale, Circler.outCosine)
(
(

Circler.scale, Circler.outSine)

Circler.attributeAffects
Circler.attributeAffects

Circler.frames, Circler.outSine)
Circler.frames, Circler.outCosine)

Let's go over what the preceding code is doing:

1.

The nattr variable behaves like an attribute factory. A factory is an object that
returns new instances of some other type of object. In this case, the factory
creates attributes and returns MObject instances representing those attributes.

Create the input attributes. Call the nattr.create method to create the
MObject representing an attribute, and assign it to the circler class so it can
be used in the Circler.compute method we create in the next section. Every
attribute requires a long name (such as "scale"), short name (such as "sc"),
and type (such as OpenMaya . MFnNumericData.kFloat). Each input is also
given an explicit default value. Set each input as storable so Maya will save
its value into the scene. Methods like nAttr.setStorable work on the last
attribute created by the nattr.create method.

Create the output attributes. Output attributes are prefixed with "out" by
convention, but it is not necessary. They are also set as not storable and not
writable. Outputs are not storable because they should be calculated only
from inputs. They are not writable because they cannot be written to in the
dependency graph. When we connect the inputs and outputs of different
nodes, outputs are the source and inputs are the destination. Only destination
attributes (inputs) should be writable. Attributes are writable by default so we
did not have to call nattr.setWritable for the input attributes.

Add every attribute to the circler class by calling the circler.
addAttribute method.

Set up which inputs affect which outputs. When an input attribute changes,
Maya will look up what output attributes need to be recalculated. Usually,
each input should affect every output.

Conceptually, node initialization is elegant: describe the input attributes, output
attributes, and how they affect each other. In practice, however, the code becomes
unwieldy, and is always filled with copy and paste. This elegant concept with clumsy
implementation is even more apparent when we look at a node's compute method.

[265]

Unleashing the Maya API through Python

Creating the compute method

The compute method is the heart of a Maya plugin node and is called to recalculate
an output attribute. An output needs to be recalculated when an input that affects

it changes. Recall that we set up the attribute affection relationships by calling the
Circler.attributeAffects method. The purpose of compute is to set the values of
the node's output plugs, which repeats the process for all downstream nodes in the
graph. For example, given the following node hierarchy:

placeszeXtu *
2 4, 2 %
% Q %@ %

% %)
0, [®)
% .

some value on the file node changes, the file.compute method will be called.
This method will recalculate the outColor attribute, which will change the
lambert.color input attribute, causing 1ambert . compute to be called. However,
the place2dTexture.outUV attribute, which is upstream from the £ile node, will
not affected, so place2dTexture. compute will not be called. It is helpful to think
about these relationships by laying out all nodes with children on the left and
parents on the right. Then you can think of changes happening at one point in the
graph causing compute to be called for nodes to the right of it (downstream) but not
to the left of it (upstream).

The concept of compute is simple, flexible, and brilliant. The way it is traditionally
implemented, however, is not. Our compute method looks like the following:

class Circler (OpenMayaMPx.MPxNode) :

def compute (self, plug, data): #(1)
if plug not in (Circler.outSine, Circler.outCosine): #(2)
return OpenMaya.MStatus.kUnknownParameter
inputData = data.inputValue (Circler.input) #(3)
scaleData = data.inputValue (Circler.scale)
framesData = data.inputValue (Circler.frames)

inputVal = inputData.asFloat () #(4)
scaleFactor = scaleData.asFloat ()
framesPerCircle = framesData.asFloat ()

angle = 6.2831853 * (inputVal/framesPerCircle) #(5)
sinResult = math.sin(angle) * scaleFactor

[266]

Chapter 8

cosResult = math.cos(angle) * scaleFactor

sinHandle = data.outputValue (Circler.outSine) #(6)
cosHandle = data.outputValue (Circler.outCosine)
sinHandle.setFloat (sinResult) #(7)
cosHandle.setFloat (cosResult)

data.setClean (plug) #(8)

return OpenMaya.MStatus.kSuccess #(9)

This implementation of the compute method has the same trademark duplication and
verbosity as the node initializer function. Let's better understand what's going on:

1.

Define the compute method. It takes the instance of the Circler class
(self), an OpenMaya .MPlug instance (plug), and an OpenMaya .MDataBlock
instance (data).

Check if the plug instance is one of the node's outputs. If it is, we will compute
the output. If it is not, we return OpenMaya .MStatus . kUnknownParameter.
The kUnknownParameter constant tells Maya we did not know how to handle
the plug. For Python plugins, these status codes are unnecessary. We should
use exceptions instead if an error is encountered during evaluation of the
compute method. I include them here to achieve parity with most Maya
Python API examples.

Call the MDataBlock. inputValue method for each input attribute. The
inputvalue method returns an OpenMaya .MDataHandle instance which
we can fetch values from and store values into.

Call the MDataHandle.asFloat method for each attribute. This gives us the
actual value of the attribute we can use in Python. All of this boilerplate is
necessary to extract useful data from OpenMaya objects.

The next three lines of code use the attribute values to calculate the sine and
cosine value that will go into our outputs. These are the only three lines that
are truly unique for our node. The rest of the lines in the compute method
are just for converting the values from and to OpenMaya objects.

Get an MDataHandle instance from each output attribute.

Call the MDataHandle. setFloat method to set the sine and cosine
output values.

Call MDataBlock.setClean with the MP1ug instance to tell the Maya
Dependency Graph that the given plug has been recalculated.

Finally, return MStatus.kSuccess status code, which is superfluous as
discussed previously.

[267]

Unleashing the Maya API through Python

Taming the non-Pythonic Maya API

After we've spent so much of this book writing clean, Pythonic code, I hope the
plugin presented here leaves you either furious or dejected at the idea of writing
node plugins this way. It is depressing to think that after all the work of integrating
Python into Maya, and learning how to program in a Pythonic way, we would need
to throw it all out the window when using Maya plugins.

I wouldn't have been so hard on creating Maya plugins through the Maya Python
API if I didn't have an alternative. What if the entire node, including the creator,
initializer, compute, and everything else about it, could be written as follows:

inputnames = ['input',6 'scale', 'frames']
create node (

NT DEPENDSNODE, 'circler',kK 0x60005,

[

floatattr('input', 'in'),
floatattr('scale', 'sc', default=10.0),
floatattr('frames', 'fr', default=48.0),
floatattr('outSine', 'so',

affectors=inputnames,
transformer=sin),
floatattr ('outCosine', 'co',
affectors=inputnames,
transformer=cosine),

D

There are no special Maya types you need to remember or error-prone patterns you
can hurt yourself with. There is no mangling of beautiful Python into an ugly and
verbose design. There is no boilerplate! Instead, you can write elegant, descriptive,
declarative code that does exactly what it says; nothing more and nothing less.

What's the secret? It lies with a moderately advanced Python technique
called metaprogramming.

Demystifying Python metaprogramming
To metaprogram is to write a program that writes or manipulates itself or another

program. It sounds much more intimidating than it is. In fact, metaprogramming
has been a large part of two chapters in this book.

[268]

Chapter 8

We were metaprogramming in Chapter 6, Automating Maya from the Outside, with
our use of eval and exec to run arbitrary code. The following is an example

of metaprogramming using the eval function. We evaluate a string to sum the
numbers from 1 to 5.

>>> s = '+'.join([str(i) for i in range(l, 6)1)
>>> S

'1+2+3+4+5"

>>> eval (s)

15

We were also metaprogramming when creating closures and decorators in Chapter 4,
Leveraging Context Managers and Decorators in Maya. The following is an example of
metaprogramming using a function to return a different function.

>>> def make sort (reverse):
def dosort (items) :
return sorted(items, reverse=reverse)
return dosort

>>> sort ascending = make sort(False)
>>> sort descending = make sort(True)
>>> sort ascending([1, 3, 21)

(1, 2, 3]

>>> sort descending([1, 3, 2])

[3, 2, 1]

These examples should be encouraging. Metaprogramming can be simple and
natural and affords a tremendous amount of power. We will use this power to turn
the Maya Python API into something much more beautiful. The next three sections
will focus on a specific area of metaprogramming: creating types dynamically.

Rethinking type creation

In Chapter 7, Taming the Maya API, we defined a type in Python as, more or less,
a dictionary with some particular semantics. We can construct two similar classes
like the following;:

>>> class Dog(object) :
def make sound(self) :
c. print 'Woof!'
>>> class Cat (object) :
def make sound(self) :
c. print 'Meow!''
>>> Dog () .make sound ()
Woof!
>>> Cat () .make sound()
Meow !

[269]

Unleashing the Maya API through Python

The preceding code creates a Dog type and cat type, each with a make_sound
method that prints a string. But what if we wanted to make hundreds of different
animals, or read and construct types at runtime from a database?

We could try creating a string that contains our class definition, use string
formatting to insert our class name and animal sound, and call exec to create
the actual class definition.

>>> template = """class %s(object):
def make sound(self) :

c. print 'gsr'n"n

>>> exec template % ('Bird', 'Tweet')

>>> Bird () .make_ sound()

Tweet

>>> exec template % ('Mouse', 'Squeek')
>>> Mouse () .make_ sound ()

Squeek

Such a technique would cut down our repetitive three lines of code into a single
line that, while slightly less repetitive, is quite ugly. We can metaprogram types
in Python by creating and evaluating strings, but the code becomes nightmarishly
difficult to read and debug. Fortunately, there's a simpler way: the type function.

Exploring the type function

In several places in this book, we used the type function to return the underlying
type or class of an instance, as in the following example:

>>> ¢ = Cow ()

>>> C

<_main__ .Cow object at 0x0...>
>>> type(c)

<class ' main_ .Cow'>

What's much less known is that the type function has an overloaded form that can
be used to construct a new type. This form takes three arguments: the name of the
type, its base classes, and an attribute dictionary. It returns the new type. This type
can then be instantiated.

Let's rewrite our previous attempt at metaprogramming with the exec statement to
use the type function instead:

>>> def make animal (name, sound): #(1)
def mksound(self): #(2)
print sound
.. return type(name, (object,), {'make sound': mksound}) #(3)
>>> Fish = make animal ('Fish', 'Blub') #(4)

[270]

Chapter 8

>>> Fish

<class ' main .Fish's>

>>> make_animal('Seal', 'Ow ow ow') () #(5)

< main .Seal object at 0x0...>

>>> make_animal ('Fox', '?') () .make_sound() #(6)

?

There is no more string magic going on in the preceding code. Let's walk through it:

1.

Define the make animal function which takes the name of the animal and the
sound it makes. The name of the animal will become the new type's name,
and the sound it makes will be printed in the make_sound method.

Define the mksound closure, which has a self argument just like a normal
instance method would have. In this case, we do not use the self argument
with the function, but it still needs to be there.

Call the type function. It takes the name of the class, a tuple of the base
classes, and a dictionary where the keys are the method names and the
values are the method implementations. The type function returns a new
class, just as if we had used the class keyword.

Call the make_animal function and get back a new class. Assign this class
to a variable in order to use it later.

Invoke the new Seal class without arguments to create an instance of it.
Then call that instance to see what a seal says.

The class creation, instance creation, and call to the make sound method can
now happen in a single line of clear, readable Python code.

Metaprogramming was needed to remove the duplicated code, and I hope it
demonstrates that a metaprogram does not need to be impossible to decipher.
Using the type function kept our code straightforward and readable.

The importance of being declarative

In normal Python, using the type function to create new types is very rare.
Metaprogramming in general is rare, and you should keep it that way! However,
one place it often comes up is when mapping non-Pythonic systems into Pythonic
interfaces. Many web frameworks and database relationship mapping systems are
often implemented with some amount of metaprogramming. This allows users of
these frameworks to write elegant Python code, and have the framework code do
the heavy lifting.

[271]

Unleashing the Maya API through Python

For example, using the popular third-party SQL Alchemy object-relational mapper
framework (see http://www.sglalchemy.org for more information), we can create
a database table that contains animal class information using the following code:

from sglalchemy import Column, Integer, String
... code to create the Base subclass
class Animal (Base) :
__tablename = 'animals'
id = Column(Integer, primary key=True)
name = Column (String)
sound = Column (String)

In olden times, the preceding code would have been written in a way that was all
about how to do something. There would be a SQL statement to create a database
table, create each column and constraint, and more. It would describe how to
represent the Animal class in the database. This is known as programming in an
imperative style: defining a sequence of commands that change the program's state.

Instead, you should prefer to program in a declarative style. To be declarative we
write code that describes what something is. The conversion from a declarative
description to code that actually does something, which may be imperative, is
hidden. Furthermore, the conversion from declaration into imperative database
access code only needs to be written once.

Declarative code is simple to read, often documenting itself. In the preceding
example, we can know at a glance that instances of the Animal class are stored in a
table named animals, which has an id primary key column, and name and sound
string columns. If this information were written out as SQL statements, it would be
much more difficult to read.

The node plugin code we wrote earlier in this chapter is very imperative. In the
node initializer, we used a series of statements to establish which inputs affect which
outputs. It would be more declarative to state what inputs affect an output when we
describe the output. In the compute method, the bulk of our code involved getting
data from and to OpenMaya objects. It would be more declarative to only state what
the transformations from input to output values are, and allow some other code to
convert between OpenMaya and Python types.

Keep this pattern in mind as we go forward. We will create a declarative,
Pythonic interface for the imperative Maya Python APL It will allow us to
succinctly describe Maya nodes, instead of writing out the long series of
commands involved in creating them.

[272]

http://www.sqlalchemy.org

Chapter 8

Designing the node factory

For the rest of this chapter, we will be creating a node factory library which will help
create dependency graph plugins. It will provide the following benefits:

Less code and duplication. Creating nodes through the node factory requires
75-90% less code than an equivalent node created with the raw Maya Python
API. The node declarations should also involve little to no duplication,

as they only need to describe data and behavior unique to the node. The
repetitiveness of working with the Maya Python API is hidden.

Intuitive and consistent. Using the node factory should be conceptually
close to designing a Maya node and not require learning many new concepts.
For example, we uphold the concepts of name, type ID, inputs, outputs,

and compute, but provide a way of working with them that does not

require knowledge of the Maya API. The node factory should also provide a
consistent and complete abstraction, not requiring the user to jump between
PyMEL and the API except for advanced usage.

Lightweight. In the worst case, a user should be able to port her code back
to the original Maya Python API style. Furthermore the library should be
flexible and easy to understand by reading the source code, and for users to
maintain and extend. These things make the library easy to use.

Extensible. New functionality should be easy to add. For example, we do not
cover array attributes in this chapter, but adding support is straightforward.
Advanced use cases requiring access to the API should be possible as well.

Clearly these goals together justify the relatively small amount of work involved in
getting the node factory up and running. It can be written once and reused endlessly
for many different applications.

Designing plugin nodes
The node factory will map how we think about Maya nodes into how we code Maya
nodes. For example, we normally think of the following when designing a Maya node:

The name of the node.
The type ID of the node.
The input attributes of the node.

For each input attribute: the type of the input, the default value of the input,
the minimum and maximum values, and some other optional information.

[273]

Unleashing the Maya API through Python

* The output attributes of the node.

* For each output: the type of the output, the minimum and maximum values,
the inputs that affect the output, the transformation of those input values into
the output value, and some other optional information.

* More advanced nodes may need to override methods such as MpxNode .
connectionMade Oor MPxNode . connectionBroken.

As we experienced when we built the circle node, the code that creates a node
does not reflect this simple design. It is filled with boilerplate calls to the Maya
Python API, and its structure does not reflect the elegance of the underlying Maya
architecture. The node factory we are developing will reflect the design of Maya
nodes onto the code used to construct them.

Designing the attribute specification

One of the key concepts of the node factory is that we can provide a homogeneous
interface for attributes of all types. Using traditional techniques, if you have a float
attribute, you need to use methods like asFloat and setFloat to get and set values.
For different types of attributes, we need to use different methods, such as asString
and setstring. This problem gets progressively worse the deeper you dig. Float2
attributes can be created by calling the MFnNumericAttribute.create method, but
color attributes must call the MFnNumericAttribute.createColor method. And
string attributes use MFnTypedAttribute, a different attribute type entirely.

To provide a homogenous interface, we must come up with a specification that
describes any attribute, and implement the specification for each concrete attribute
type. We will use a base class to define the specification, and subclasses to implement
it for each attribute type. Alternatively, you could use a dictionary with a common
set of keys. The following is the specification for a float attribute. We will cover this
design in more detail later.

class FloatAttr (AttrSpec) :
def createfnattr(self) :
return OpenMaya.MFnNumericAttribute ()
def getvalue(self, datahandle) :
return datahandle.asFloat ()
def setvalue(self, datahandle, wvalue):
datahandle.setFloat (value)
def create(self, fnattr, longname, shortname) :
return fnattr.create (
longname, shortname, OpenMaya.MFnNumericData.kFloat)
def setdefault (self, fnattr, value):
fnattr.setDefault (value)
A FLOAT = FloatAttr()

[274]

Chapter 8

Because the specifications are immutable and unchanging, we hide the class
definition (_FloatAttr) and expose a single instance of it (A_FLOAT). We use an
ALL_CAPS naming convention to denote that the variable is a constant. The caller
does not really need to know anything about the implementation; they just need to
pass the specification around.

Similar specifications will be built for other attribute types. When we need to support
other attribute types, such as color or enum, we only need to figure out how to
implement the specification in terms of that type. We will not need to change the
node factory code itself.

1
‘Q See Supporting string and color attributes and Supporting enum attributes

later in this chapter for examples of other attribute types.

Designing the node type specification

In the same way we can provide a homogenous interface for an attribute through
a specification, we can do the same for a node. Let's look at the specification of a
dependency graph node. We will go over this code in more detail later.

class _DependsNode (NodeSpec) :
def nodebase (self) :
return (OpenMayaMPx.MPxNode,)
def nodetype(self):
return OpenMayaMPx.MPxNode .kDependNode
def register(self, fnplugin, typename, typeid, create, init):
fnplugin.registerNode (
typename, typeid, create, init,
self. nodetype())
def deregister(self, fnplugin, typeid):
fnplugin.deregisterNode (typeid)
NT_DEPENDSNODE = DependsNode ()

Our node type specification defines the common information we need to create

a node, including the base class and methods for registering and deregistering it.
That's all there is to a node-type specification. The rest of the information about a
node, such as its attributes, is specific to the custom nodes we will create.

A\l

‘Q See Supporting transform nodes later in this chapter for a

transform node specification.

[275]

Unleashing the Maya API through Python

Building the node factory

In the following sections, we will implement the concepts explained in Designing the
node factory. This will involve moving incrementally from the traditional circle node

plugin we built in Understanding Dependency Graph plugins, first extracting out some

of the duplication to use attribute specifications, then tying in the node specification,
and finally overriding the compute method.

Specifying attributes

The first step in building the node factory is to create the attribute specification
base class and the concrete subclass we will need for float attributes. Create a file at
C:\mayapybook\pylib\nodefactory.py and type into it the following code:

from maya import OpenMaya, OpenMayaMPx

class AttrSpec(object): #(1)

def createfnattr(self):
raise NotImplementedError ()

def getvalue(self, datahandle) :
raise NotImplementedError ()

def setvalue(self, datahandle, wvalue):
raise NotImplementedError ()

def create(self, fnattr, longname, shortname) :
raise NotImplementedError ()

def setdefault (self, fnattr, value):
raise NotImplementedError ()

class FloatAttr (AttrSpec): #(2)
def createfnattr(self):
return OpenMaya.MFnNumericAttribute ()
def getvalue(self, datahandle) :
return datahandle.asFloat ()
def setvalue(self, datahandle, wvalue):
datahandle.setFloat (value)
def create(self, fnattr, longname, shortname) :
return fnattr.create(
longname, shortname, OpenMaya.MFnNumericData.kFloat)
def setdefault (self, fnattr, value):
fnattr.setDefault (value)
A FLOAT = FloatAttr() #(3)

[276]

Chapter 8

Let's walk through the preceding code:

1.

Define the attribute specification base class. Concrete attribute specifications
will override the methods on this class. This class is the homogenous
interface for attributes; any attribute can be implemented by these methods.
A NotImplementedError is raised inside each method because the AttrSpec
class should not be instantiated and used directly.

Define the float attribute specification class _FloataAttr. We make the class
definition protected by preceding it with an underscore; callers should use
the A_FLOAT variable (see next point). The methods use the appropriate
mechanisms for manipulating float data, such as asFloat and setFloat.

Define a single instance of the float specification class: the global A FLOAT
variable. We will use the A_ prefix on our specification instances to group
them as concrete attribute specifications.

Remember, these are all implementation details for the node factory. Callers do not
need to know how specifications work at all. They only need to pass around the
concrete specifications.

Creating attributes

Next, we will create a function that uses attribute specifications to simplify the
attribute creation process. You may recall from Defining inputs, outputs, and the
initializer that creating an attribute requires a subclass of MPxNode, a long name,
short name, and attribute type. Attributes can also have a default value. Outputs
require a collection of inputs that affect them.

Place the following code into the nodefactory.py file. It will handle all the
attribute creation.

def create attr(

nodeclass, attrspec, 1ln, sn,
affectors=(), default=None) :

attr = attrspec.createfnattr() #(1)

plug = attrspec.create(attr, 1ln, sn) #(2)

if default is not None:
attrspec.setdefault (attr, default) #(3)

isinput = not bool (affectors) #(4)
attr.setWritable (isinput)

attr.setStorable (isinput)

nodeclass.addAttribute (plug) #(5)

[277]

Unleashing the Maya API through Python

setattr (nodeclass, 1ln, plug) #(6)

for affectedby in affectors: #(7)
inattrobj = getattr (nodeclass, affectedby)
nodeclass.attributeAffects (inattrobj, attrobj)

The entire thirty-three line init function inside circlernode. py can be simplified
into six lines:

from nodefactory import create attr, A FLOAT

def init():
create attr(Circler, A FLOAT, 'input',6 'in'")
create attr(Circler, A FLOAT, 'scale',6 'sc', default=10.0)
create attr(Circler, A FLOAT, 'frames',6 'fr', default=48.0)
inputnames = ['input',6 'scale', 'frames']
create attr(Circler, A FLOAT, 'outSine',6 'so', inputnames)
create attr(Circler, A FLOAT, 'outCosine',6 'co', inputnames)

Now that we've seen how the create_attr function is called, let's go through its
code in more detail. The function is designed to work with any plugin class and
attribute specification, but I will use concrete specifications and types here to make
the explanation more clear.

1. Calling the A FLOAT.createfnattr method returns a new
OpenMaya .MFnNumericAttribute instance.

2. Calling the A FLOAT.create method calls the MFnNumericAttribute.create
method and returns the result, an instance of MObject that represents the
new attribute.

3. If a default value is provided, call the o_FLOAT.setdefault method, which
calls the MFnNumericAttribute.setDefault method to set the attribute's
default value.

4. Determine whether something is an input or output based on whether it is
affected by other attributes. No affectors means it is an input. Inputs should
be writable and storable, outputs should not be.

5. Call circler.addattribute to add the attribute to the class, just like the old
code. This adds the attribute to the Maya representation of the node.

6. Call setattr(Circler, 1n, attrobj) to setthe MObject representing the
attribute on the circler class, so it is accessible in the Circler.compute
method. This adds the attribute to the Python representation of the node.

[278]

Chapter 8

7. If the attribute is an output, loop over the affectors. For each affector, get the
MObject for the input attribute from the Python type (see point 6), and call
Circler.attributeAffects (<input attrs>, <output attrs).

If you're having trouble following, try going through the create_attr method for
any of the circler attributes. Thinking through a concrete use case can often bring
clarity to code.

This is a huge improvement. The node has the same behavior and less code.
However, we can simplify much more. The circlernode.py file still contains a lot of
boilerplate. Next, we will remove the circler class definition, node creator function,
and node initializer function.

Specifying a node

We can create nodes using a design similar to what we used for attributes. We
should continue to identify boilerplate and figure out how to remove it. A node
specification is quite simple:

* The tuple of the node's base classes. The tuple (OpenMayaMpx.MPxNode,)
would be used for dependency graph nodes.

* A function to register the node. Registration requires an MFnPlugin instance,
the type name, the type ID, the creator function, and an initializer function.

* A function to deregister the node. Deregistration requires an MFnPlugin
instance and the type ID.

We can specify every type of Maya node with that specification. Concrete nodes such
as Circler also consist of:

* The name of the node.

* The type ID of the node.

* The input and output attributes of the node.

* A way to convert input values into output values, such as the three lines of
math in the Circler.compute method which calculate the sine and cosine.

* Optional overrides for methods other than compute, such as the MpxNode.
connectionMade method.

Other information, such as the node creator function, is the same for every node.
The node factory can take care of it.

[279]

Unleashing the Maya API through Python

We can take the requirements for our specification to build a base class and concrete
subclass for dependency nodes inside nodefactory.py:

class NodeSpec (object) : #(1)
def nodebase (self) :
raise NotImplementedError ()
def register(self, fnplugin, typename, typeid, create, init):
raise NotImplementedError ()
def deregister(self, fnplugin, typeid):
raise NotImplementedError ()

class _DependsNode (NodeSpec) : #(2)
def nodebase (self) :
return (OpenMayaMPx.MPxNode,) #(3)
def register(self, fnplugin, typename, typeid, create, init):
fnplugin.registerNode (# (4)
typename, typeid, create, init,
OpenMayaMPx . MPxNode . kDependNode)
def deregister(self, fnplugin, typeid): #(5)
fnplugin.deregisterNode (typeid)
NT_DEPENDSNODE = _DependsNode () #(6)

Let's walk through the preceding code. The ideas are the same as for
attribute specifications.

1. Define the Nodespec base class. This class contains the three methods that
define the specification. Subclasses must override these methods, so the
default implementations raise multiple Not ImplementedError.

2. Define the DependsNode subclass, which inherits from the NodeSpec
base class. The implementation should be familiar from the original
circle node. See the Supporting transform nodes section for an example
of a different subclass.

3. The nodebase method returns a tuple containing MpxNode.

The register method calls MFnPlugin. registerNode with the given
arguments. It passes in MPxNode . kDependNode, which Maya confusingly
calls the node type, to indicate to Maya this is a basic dependency node.
There are other node types available, such as kDeformerNode. You can
create other types of nodes by using a different node type flag. We won't
deal with other values of this flag for the sake of simplicity.

[280]

Chapter 8

5. The deregister method calls the MFnPlugin.deregisterNode with the
given arguments.

6. Define a single instance of the dependency node specification class
named NT_DEPENDSNODE. Use the NT _ prefix to identify objects as concrete
node specifications.

By using the node specifications from this section, and the type function which was
explained in the Demystifying Python metaprogramming section, we can simplify the
remaining boilerplate and duplication away into a node creator function. However,
we'd like to declare an entire node and all attributes in a single expression and not
across multiple statements. This presents a problem, because attributes need to know
about the node type, but the node type is declared with its attributes. To solve this
problem, we can use a technique called partial application.

Using partial application to create attributes

Partial application (often called partial function application) means processing a
function with n arguments into a function with less than n arguments. We've actually
used this technique throughout this book without knowing it, usually by creating
closures as in the following example:

>>> def add(a, b): # Our 'full' function
.. return a + b
>>> def partial add(a):

def add2(b): # Create a closure

return add(a, b)

return add2
>>> adder = partial_add(1l) # Create the partial function.
>>> adder (2) # Call the partial function
3

We can use partial application to turn the nodefactory.create_attr function,
which takes an MPxNode subclass and returns a concrete attribute, into a function
that takes everything except the subclass and returns a closure that takes only the
subclass. The closure then returns the concrete attribute.

[281]

Unleashing the Maya API through Python

Inside the nodefactory.py file, replace the create_attr function with a
create_attrmaker function as in the proceeding code:

def create attrmaker(
attrspec, 1ln, sn,
affectors=(), default=None):
def createattr(nodeclass):
fnattr = attrspec.createfnattr()
attrobj = attrspec.create(fnattr, 1ln, sn)
if default is not None:
attrspec.setdefault (fnattr, default)
isinput = not bool (affectors)
fnattr.setWritable (isinput)
fnattr.setStorable (isinput)
nodeclass.addAttribute (attrobj)
setattr (nodeclass, 1ln, attrobj)
for affectedby in affectors:
inattrobj = getattr (nodeclass, affectedby)
nodeclass.attributeAffects (inattrobj, attrobj)
return createattr

The code has changed slightly. The create_attr function becomes the
create_attrmaker function, which takes the same arguments as the original minus
the node type. The nested createattr function closes over all of those arguments
and is returned by create_attrmaker. The createattr function is called with only
the node type. This way, we can declare the attributes along with the node, but create
them after the node type is synthesized.

Creating a node

In this section, we will create the first version of our node builder function, which
will support a node name, type ID, and attributes. In the next section we will add
support for the compute method, and later on in the Overriding MPxNode methods
section we will add support for methods such as connectionMade.

The code for create_node follows. It should go into nodefactory.py.

def create node (nodespec, nodename, typeid, attrmakers): #(1)
def compute(*): #(2)
print 'Compute not yet implemented.'
methods = {'compute': compute}
nodetype = type (nodename, nodespec.nodebase (), methods) #(3)

[282]

Chapter 8

tid = OpenMaya.MTypeId (typeid) # (4)
def creator(): #(5)

return OpenMayaMPx.asMPxPtr (nodetype ())
def init(): #(6)

for makeattr in attrmakers:

makeattr (nodetype)

def register (plugin): #(7)

nodespec.register (plugin, nodename, tid, creator, init)
def deregister (plugin) :

nodespec.deregister (plugin, tid)
return register, deregister #(8)

Let's walk through the preceding code for creating a node:

1.

Define the create node function. It takes in a node specification, node
name, type ID, and attribute maker functions. An attribute maker function
is returned from the create_attrmaker function we built in the previous
section. Each attribute maker is called with the node type constructed inside
the create_node function that we are building.

Define a nested compute function, which is just a stub for now.

Create a new type using the type function. Pass in the node name as the
type name, the node specification's tuple of base classes, and the method
dictionary which for now only contains the stub compute function.

Convert the typeid argument, which is an integer, into an MTypeId instance.
This way, the caller does not need to worry about the MType1d class and only
needs to pass an integer as the type ID.

Define the node creator function, which tells Maya to manage the Python
object's memory. Notice that we use the newly constructed nodetype as
the class.

Define the node initializer function. The node initializer just sets up the
node's attributes. For now, this only entails calling each attribute maker
closure with the newly constructed node type.

Define nested register and deregister functions. These functions have
a simple interface that only needs an MFnPlugin instance passed in. They
capture other arguments, such as the node's type ID, from local variables.

Return the register and deregister functions. The caller is responsible
for invoking them with an MFnPlugin instance.

[283]

Unleashing the Maya API through Python

Next we will hook up the new create_node method to the circlernode.py plugin
file. The following is the entire contents of the file. Notice how small it is.

from nodefactory final import (

NT DEPENDSNODE, A FLOAT, create_attrmaker, create_node)
_deregister funcs = [] #(1)
def floatattr(*args, **kwargs): #(2)

return create attrmaker (A FLOAT, *args, **kwargs)
def register circler (fnplugin): #(3)

inputnames = ['input',6 'scale', 'frames']

reg, dereg = create node (

NT_DEPENDSNODE, 'circler',6 0x60005, [

floatattr('input', 'in'),
floatattr('scale', 'sc', default=10.0),
floatattr('frames', 'fr', default=48.0),
floatattr ('outSine', 'os', inputnames),
floatattr ('outCosine', 'oc', inputnames),

1)
reg (fnplugin)
_deregister funcs.append (dereg)

def toplugin(mobject) :

return OpenMayaMPx.MFnPlugin (mobject, 'Marcus Reynir', '0.01')
def initializePlugin (mobject) :

register circler(toplugin(mobject)) #(4)
def uninitializePlugin (mobject) :

plugin = toplugin(mobject) #(5)

for func in _deregister_funcs:

func (plugin)

Let's go through the preceding code to see how the original circlenode.py file with
over eighty lines has shrunk in half.

1. Create the deregister funcs list at the module level. It contains all the
functions to deregister the plugin's nodes during uninitialization. This makes
it much easier to define several nodes in the same file. Even if more nodes are
defined, the code in uninitializePlugin will not need to change.

2. Define the floatattr helper function to simplify the float attribute creation
code; this is optional and I only use it so attribute declarations fit on a
single line.

[284]

Chapter 8

3. Define the register circler function. It registers the circler node
type, which calls the nodefactory.create_node function. It invokes the
registration function returned from create_node with the passed MFnPlugin
instance. It also adds the deregistration function to the _deregister_funcs
list for later usage.

4. When the plugin is initialized, call the register circler function with an
MFnPlugin instance.

5. When the plugin is uninitialized, call every function in _deregister_ funcs
with the MFnPlugin instance.

To complete the node factory version of the circler node, all that remains is
implementing the compute method.

Slaying the compute method

In this section, we will create an abstraction for the compute method so that callers
do not need to worry about using the Maya Python API. They can instead focus on
the actual transformation of inputs into outputs.

To implement the compute method, the node factory will grab OpenMaya values
from input attributes, convert them to regular Python values, and pass them to a
user-supplied transformer function which returns a Python value. The node factory
will convert that into an OpenMaya type and set the output attribute. This process is
illustrated in the following figure:

[MDataHandle]—»CPython value CPython value MDataHandle J

MDataBlock [MDataHandle]—»CPython value transformer CPython value MDataHandle }
{ MDataHandle }—b(Python value CPython vaIueH MDataHandle }

The transformer function will take the number of arguments equal to, and in the
same order as, the inputs that affect the output. For example, the following would be
the transformer to calculate the outsine output attribute on the circler node.

def sin xformer (input, scale, frames):
angle = 6.2831853 * (input / frames)
return math.sin(angle) * scale

[285]

Unleashing the Maya API through Python

The sin_xformer function takes the float values of the three input attributes, and
calculates what the value of the output should be. There is not a Maya Python API
type in sight!

\ This technique of converting values into a different form, processing
~ them, and converting them back is conceptually similar to the
Q decorate-sort-unsort pattern. You may want to research it if you find
the idea of the transformer laid out here unfamiliar or confusing.

It is important to note that a transformer is not associated with the node as a compute
method would be. A transformer is associated with each output attribute. This allows
us to think of outputs individually and build separate transformers for each. I find
this much simpler than a compute method with a number of if/else conditions
determining which output is being computed.

The node creator function needs more information about a created attribute so it can
work with the transformer. Let's make the following small change to the createattr
closure inside the create_attrmaker function in nodefactory.py. The previous
version of the closure did not return anything. It should now return the attribute's
long name, specification, transformer, and affectors. The changes are highlighted.

def create_ attrmaker (
def createattr (nodetype):

for affectedby in affectors:
inputplug = getattr (nodetype, affectedby)
nodetype.attributeAffects (inputplug, plug)
return 1ln, attrspec, transformer, affectors
return createattr

Finally, we must add a significant amount of code to the nodefactory.create_node
function. In the following listing, the nested compute function is fleshed out, and the
node initializer sets up some associations between output and input attributes.

def create node(nodespec, name, typeid, attrmakers):
attr to spec = {} #(1)
outattr to xformdata = {}
def compute (mnode, plug, datablock):
attrname = plug.name () .split('."') [-1]
xformdata = outattr to xformdata.get (attrname) #(2)
if xformdata is Nomne:
return OpenMaya.MStatus.kUnknownParameter

[286]

Chapter 8

xformer, affectors = xformdata
invals = []
for inname in affectors: #(3)
inplug = getattr (nodetype, inname)
indata = datablock.inputValue (inplug)
inval = attr to spec[inname] .getvalue(indata)
invals.append(inval)
outval = xformer (*invals) # (4)
outhandle = datablock.outputValue(plug) #(5)
attr to spec[attrname].setvalue(outhandle, outval)
datablock.setClean (plug)
methods = {'compute': compute}
nodetype = type (name, nodespec.nodebase (), methods)

mtypeid = OpenMaya.MTypeld (typeid)
def creator() :
return OpenMayaMPx.asMPxPtr (nodetype ())
def init():
for makeattr in attrmakers: #(6)
1n, attrspec, xformer, affectors = makeattr (nodetype)
attr to spec[plug] = attrspec
if xformer is not None:
outattr to xformdatalplug]l = xformer, affectors
... Unchanged code elided

This is by far the most advanced code in the chapter, and possibly the book. Let's go
over it in detail.

1. Theattr to_spec dictionary holds the long name of each attribute as the
key and the attribute's specification as the value. The outattr to_xformdata
dictionary holds the long name of each output attribute as the key and a tuple
of the transformer function and affectors (list of names of input attributes that
affect the output attribute) as the value. These dictionaries will be filled with
the values returned from the attribute creator during node initialization (see
point 9). I've chosen to use attribute names as keys out of convenience, but you
can also try using the MObject representing the attribute.

2. Inside the nested compute function, find the transform and affectors for the
attribute. If there is no entry, it means the plug can't be handled so return the
MStatus.kUnknownParameter value.

3. For each affector, get the value of the attribute. To do this, get the MObject
that represents the input attribute, get the MDataHandle for it, and then use
the attribute specification to retrieve the actual Python value, which is a float
in our case.

[287]

Unleashing the Maya API through Python

4. Invoke the transformer function with these values.

5. Get the MDataHandle for the output attribute, and use the output attribute
specification to set the output's value. Finally, set the plug clean.

6. When the node is initialized and attributes created (which happens before
compute is called, remember), fill out the attr to spec and outattr to_
xformdata dictionaries. The remaining code in the create_node function is
the same.

The preceding code follows the transformer function concept quite closely. It
converts input attributes from OpenMaya to Python types using their specifications,
calls the transformer with Python types, and sets the output attribute's value using
the transformer's return value and the output's specification.

Notice how similar this compute function is to the old compute method. Lots of API
access and boilerplate. The important thing is we only need to write this code once
and can reuse it many times.

Let's see how the transformer is hooked up in circlernode.py. The new code
is highlighted.

def make transformer (mathfunc):
def inner (input, scale, frames):
angle = 6.2831853 * (input / frames)
return mathfunc (angle) * scale
return inner
sin = make transformer (math.sin)
cosine = make transformer (math.cos)

def register circler (plugin):
inputnames = ['input',6 'scale', 'frames']
reg, dereg = create node (
NT DEPENDSNODE, 'circler', 0x60005,
[

floatattr ('input', 'in'),
floatattr('scale', 'sc', default=10.0),
floatattr('frames', 'fr', default=48.0),
floatattr('outSine', 'so',

affectors=inputnames,
transformer=sin),
floatattr('outCosine', 'co',
affectors=inputnames,
transformer=cosine),

[288]

Chapter 8

It is exciting to see how our sine and cosine calculation went from 20 lines to 4, and
how we've really pulled the essence of the math into a function that has nothing to
do with Maya.

With that, we can verify the node factory design works. It can handle float attributes
with ease. The rest of the chapter will expand on the design laid out so far, adding
support for other attribute and node types, and more advanced use cases.

Extending the node factory

The following sections cover extending the node factory's functionality. We will
add support for string, color, and enum attributes, transform nodes, and overriding
MPxNode methods other than compute.

There are many more features to support than what's covered here, such as string
and array attributes. When it comes time to add a new feature to the node factory,

I suggest you start by getting comfortable with its implementation using the Maya
Python API directly. Only then should you support it in the node factory. This is
due, first and foremost, to the fact that many examples and tutorials exist for the APL
Second, it is due to the fact that diagnosing issues in the node factory can be difficult
due to its dynamism.

Supporting string and color attributes

Adding support for string and color attributes demonstrates the power of the
attribute specification design. For string attributes, add the following code to
nodefactory.py:

class _StringAttr (AttrSpec) :
def createfnattr(self) :
return OpenMaya.MFnTypedAttribute ()
def getvalue(self, datahandle):
return datahandle.asString/()
def setvalue(self, datahandle, wvalue):
datahandle.setString(value)
def create(self, fnattr, longname, shortname) :
return fnattr.create (longname, shortname,
OpenMaya.MFnData.kString)
def setdefault (self, fnattr, value):
fnattr.setDefault (OpenMaya.MFnStringData () .create (value))
A STRING = _StringAttr()

[289]

Unleashing the Maya API through Python

Now you can just use A_STRING to declare string attributes in the same way you
use A_FLOAT to declare float attributes. Supporting color attributes is equally
straightforward, as the following specification demonstrates:

class _ColorAttr (AttrSpec) :
def createfnattr(self) :
return OpenMaya.MFnNumericAttribute ()
def getvalue(self, datahandle) :
return datahandle.asFloatVector ()
def setvalue(self, datahandle, wvalue):
datahandle.setMFloatVector (OpenMaya.MFloatVector (*value))
def create(self, fnattr, longname, shortname) :
return fnattr.createColor (longname, shortname)
def setdefault (self, fnattr, value):
fnattr.setDefault (*value)
A COLOR = _ColorAttr()

See the next section for an example plugin that uses string and color attributes.

Notice that we did not need to change anything else in the node factory to
support new attribute types. This is a good thing as it makes the code easy
to extend and understand.

Supporting enum attributes

Enum attributes can be set to any member of an enumeration of values. For

example, the OpenMaya .MStatus type defines the MStatusCode enumeration. Each
MStatusCode enum has a name, such as kSuccess and kFailure, and a value. The
value itself is usually not important, since enums are meant to be used by name and

not by value.

Enum attributes are very similar to integer attributes. However when we create the

attribute, we need to define the possible name and value pairs, called fields.

There's more to enumerations as a general concept than we are going to
M cover here. For example, they are commonly used with bitwise operations
Q so they can act as masks. However, it is much more common for enum
attributes to be used for explicitly defined and mutually exclusive values,
like the rotation order of an Euler angle solver.

Even though only enum attributes support fields, you should always avoid special

case code such as:

if attrspec is A ENUM:
... do special code

[290]

Chapter 8

Avoiding special cases will keep your code clean. However, we will need to change
code in a couple places, since fields are a new concept for the node factory. Add an
allow_fields method to the Attrspec base class. It will return False by default.

class AttrSpec (object) :
... Other methods elided

def allow fields(self):
return False

Now create a new attribute specification for enum attributes. Override the
allow fields method to return True.

class _EnumAttr (AttrSpec) :
def createfnattr(self) :
return OpenMaya.MFnEnumAttribute ()
def getvalue(self, datahandle):
return datahandle.asInt ()
def setvalue(self, datahandle, wvalue):
datahandle.setInt (value)
def create(self, fnattr, longname, shortname) :
return fnattr.create (longname, shortname)
def setdefault (self, fnattr, value):
fnattr.setDefault (value)
def allow fields(self):
return True
A ENUM = _EnumAttr()

The create_attrmaker function must also change to support fields. I've highlighted
the changes and marked where the unchanged code has been elided:

def create attrmaker (
attrspec, 1ln, sn, affectors=(), default=None,
transformer=None, fields=()): #(1)

if not attrspec.allow fields() and fields: #(2)
raise RuntimeError (
'Fields not allowed for %s.' % attrspec)

def createattr (nodeclass) :
fnattr = attrspec.createfnattr()
attrobj = attrspec.create(fnattr, 1ln, sn)
for name, value in fields: #(3)
fnattr.addField (name, wvalue)
... unchanged code elided

[291]

Unleashing the Maya API through Python

Let's go over the changes in the preceding code:

1. Add a fields parameter which defaults to an empty tuple.

2. If the attribute specification does not support fields, but the caller has
supplied fields, raise an error. This sort of aggressive checking, especially
around trickier areas, is a good idea. A better idea still would be to redesign
our code to not need incompatible parameters at all!

3. [Iterate over the name and value for each field and pass them into the
MFnEnumAttribute.addField method.

The following demonstrates the use of string, color, and enum attributes:

nodefactory.create node (
nodefactory.NT DEPENDSNODE, 'otherdemo',6 0x60006,
[

nodefactory.create attrmaker (

nodefactory.A COLOR, 'col', 'c'),
nodefactory.create attrmaker (
nodefactory.A ENUM, 'enum',6 'e',6 default=1,
fields=[
['field1l', 1],
['field2', 2]1),
nodefactory.create attrmaker (
nodefactory.A STRING, 'string', 's', default='hi')])

Supporting transform nodes

The node factory at this point supports a variety of attribute types, but only a single
node type: MPxNode, for basic dependency nodes. In this section, we will add support
for the transform node type, which inherits from openMayaMpx . MPxTransform

and has a representation in the Maya viewport. The creation of transform nodes

is considerably more complex than dependency nodes, requiring a special
OpenMayaMPx .MPxTransformationMatrix subclass as well. However, all of this
complexity can be hidden behind the node specification. The _TransformNode class
in the following code has some helpers on it, including the transformation matrix
subclass and the function to create the transformation matrix. We put the helpers
here to avoid dirtying the module, and keep our code self-contained.

class _TransformNode (NodeSpec) :
xform typeid = OpenMaya.MTypeId (0x60080)
class TransformMatrix (OpenMayaMPx.MPxTransformationMatrix) :
pass

[292]

Chapter 8

def nodebase (self) :
return (OpenMayaMPx.MPxTransform,)
def make node matrix(self):
return OpenMayaMPx.asMPxPtr (TransformMatrix())
def register(self, fnplugin, typename, typeid, create, init):
fnplugin.registerTransform(
typename, typeid, create, init,
self. make node matrix, self.xform typeid)
def deregister(self, fnplugin, typeid):
fnplugin.deregisterNode (typeid)
NT_ TRANSFORMNODE = TransformNode ()

Those are the only changes required to support transform nodes. The core of the
node factory was not modified and no special cases were made. We also kept things
simple for the caller, by hiding the MPxTransformationMatrix class and other
boilerplate behind the NT TRANSFORMNODE specification. The calling code is as simple
as it was for dependency nodes, as in the following example:

nodefactory.create node (
nodefactory.NT TRANSFORMNODE, 'transformdemo', 0x60007, [I])

Overriding MPxNode methods

Up until now, the compute node is the only MPxNode method we've needed to
override. In many cases, this is sufficient and even recommended. Nodes should

be self-contained and not depend on outside state, and connection compatibility is
ideally based on attribute type alone. There will inevitably be cases, however, where
certain rules may need to be broken. We can handle this in two ways.

We can add first-class support for other MpxNode methods like connectionMade and
connectionBroken. This has lots of benefits, but considerable costs to cover a limited
number of use cases. It would take similar effort to what was required for the compute
function. It is worth the effort if you have methods that are commonly overridden.

The second option, which I find preferable and which we will pursue in the
following example, is to allow the caller to pass in the method dictionary themselves.
This exposes the Maya Python API to advanced users of the node factory, but is fully
extensible and requires almost no extra work.

[293]

Unleashing the Maya API through Python

It only takes one extra line to support MPxNode method overrides, highlighted in the
following code (unchanged code is elided):

def create node (nodespec, name, typeid, attrmakers,
override methods=None) :
... unchanged code elided ...
methods = {'compute': compute}
methods.update (override methods)
nodetype = type (name, nodespec.nodebase (), methods)
... unchanged code elided ...

With those very small changes, a caller can now pass in their own override methods.
The signature of the override method must be the same as the normal MPxNode
method. In the following example, we override MPxNode . connectionMade:

def connection made (nodeself, plug, other plug, as_src):
print 'Connection made!'

nodefactory.create node (
nodefactory.NT DEPENDSNODE, 'overridesdemo', 0x60010, [
nodefactory.create attrmaker (
nodefactory.A COLOR, 'color',6 'c')],
{'connectionMade': connection made})

Whenever a connection is made to an overridesdemo node, the string "Connection
made ! " will print to the Script Editor. We can use this same technique to override
any method on MpxNode, or whatever your node's base class may be.

Summary

In this chapter, we used the power and flexibility of Python and the Maya Python API
to develop a node factory that allows us to create Maya dependency graph plugins

in a declarative and Pythonic style. We started this process by going through the
frustrating experience of building a plugin node using C++-based Maya API patterns.
We then saw how Python metaprogramming allows us to simplify the boilerplate and
duplication required by imperative frameworks. Finally, we put this knowledge to use
by building the node factory and seeing how it simplified the original plugin code. We
also saw how easy it is to add more features to the node factory.

I hope that this chapter, as well as all preceding chapters, demonstrated how using
and thinking with Python can transform the way you program with Autodesk Maya.
In the next and final chapter, we will learn how to both leverage and contribute to
the Python community. Integrating effectively with the larger Python ecosystem will
allow you to exploit the language's full potential.

[294]

Becoming a Part of the
Python Community

Over the previous eight chapters, I hope you have learned a lot of useful programming
skills. Knowing how to handle errors, create context managers and decorators,
leverage PySide, and get around the Maya Python API are concrete topics you now
have experience in. Recognizing Pythonic code and understanding how to abstract
poor designs into elegant ones are ongoing journeys you have a head start on.

To unlock Python's full potential, this book is not enough. No amount of training alone
will turn you into a Python expert. Python is so powerful, and so exciting, because it

is the unifying force behind an incredible community. It is in this community where
Python's true strength lies and where you can unleash your creativity as a developer.
All great Python programmers are also a part of its community.

In this chapter, we will look at the Python community in more depth and go over
how to integrate with it and take advantage of what it has to offer. We'll start by
understanding what Open Source Software is. Next we will learn how to create a
site directory, and fill it with third-party modules others have developed. After that,
we will find out how to contribute back to a project. For the truly adventurous, I will
explain how to get your own open source project up and running. Finally, we will
list some hubs of activity in the Maya Python community.

Becoming a Part of the Python Community

Understanding Open Source Software

There is no single and universal definition for Open Source Software (OSS). The
simplest definition would be software for which the source is freely available,
meaning you do not need to license or buy it to use it legally (thus leaked source
code does not make a program open source). This lack of clarity is reflected in the
number of open source licenses available. There are nearly seventy open source
licenses as classified by the Open Source Initiative (OSI), which has a relatively
strict definition. There are countless more sort of open source licenses which may
not meet a fully open source criteria for any number of reasons (and thus should not
really be considered open source licenses). The Open Source Initiative is, according
to its website, "a non-profit corporation with global scope formed to educate about
and advocate for the benefits of open source, and to build bridges among different
constituencies in the open source community."

Entire books have been written about open source licensing, and I am not naive
enough to try and cover the topic in depth. That said, the most popular licenses
are probably the MIT License, Apache License, the GPL, and the BSD licenses.
The http://www.choosealicense.com website provides an excellent overview
of different open source licenses. To learn more about open source licensing in
general, visit the Open Source Initiative at http: //www.opensource.org.

Differentiating OSS from script download sites

In addition to the licensing situation, there's also the issue of development model. A
good open source project can easily integrate changes submitted by its community
into its main version. For example, you can clone the Python source code repository,
find or create an issue for a bug, fix it, create and submit a patch for the change, and
one of Python's core developers will review and commit your patch. The change
would then be released along with the next version of Python. Obviously this is

a simplistic description, but the key is that users can get changes back into the
software, and that all of this is open.

You can find the CPython source code repository at http://hg.python.
. org/cpython/. The repository allows you to see all the work that goes
% into the much simpler distribution you use on your computer. If you
s are interested in contributing to Python, from CPython interpreter fixes
to correcting typos in standard library documentation, you can find the
Python Developer's Guide at http: //docs.python.org/devguide/.

That said, nothing stops you from posting a bunch of code on the Internet without a
license. And in fact, the 3D community has a long history of doing precisely this!

[296]

http://www.choosealicense.com
http://www.opensource.org
http://hg.python.org/cpython/
http://hg.python.org/cpython/
http://docs.python.org/devguide/

Chapter 9

If you browse one of the popular script download sites like http://creativecrash.
com, you can find thousands of potentially useful scripts. Some you must buy, but
most are free. Of the free scripts, many do not have any license information, making
them technically not open source. Of those with license information, some have
Open Source Initiative-approved licenses and are technically Open Source Software.

However, this download and extract a zip file distribution model which has been so
prevalent in the 3D community is not a model for sustainable open source software.
Even though some scripts may technically be open source, the ecosystem they are
developed and released in lacks vital features.

The key feature of mature open source software is that the entire source tree is freely
available, listing all changes to the source code. It is not enough to release only an
executable or zip file containing code. Though you can have a healthy project with
only one person submitting changes, it is unusual. Users are often willing and able to
contribute back changes, and authors are excited to get contributions! Contributions
by users is the sign of a healthy open source project, and without a freely available
source tree, it is impossible.

While script download sites can and will continue to serve an important role in the
community for getting scripts and tools to end users, they are not meant to, and have
never effectively been, a way to share code. This is a shame, as there is a great deal
of commonly useful code written by the 3D community that has been developed and
redeveloped many times.

With a good grasp of Python, and the rest of the information in this chapter, I
propose that Maya Python programmers can now do better. The remainder of this
chapter will show you how to use available open source projects, and contribute or
start your own.

Defining what a third-party module is

The most common way to use open source software in Python is simply finding and
installing third-party modules. A third-party module is a module not included with
Python, and not developed by you or your team/ project/company. In other words,
a third party that you do not control developed the module.

For example, PyYMEL is a third-party module in Maya 2010 because it is not included
with Maya 2010. Maya 2011 and newer versions include PyMEL so to users of

those versions, it is not a third-party module. To Luma Pictures, the creators and
core developers of PYMEL, PyMEL is a first-party module, developed in house. To
Autodesk, who create Maya and bundle PyMEL with Maya, PyMEL is still a third-
party module.

[297]

http://creativecrash.com
http://creativecrash.com

Becoming a Part of the Python Community

The bundling of PyMEL with Maya 2011 and newer has generally been a
good thing by making PyMEL available by default. However, it can cause

M problems if you want to use a newer version of PyMEL. To get around
this, check out PyMEL's installation guide. Since it is hosted in several
locations (a side effect of OSS), there's no authoritative location so I will
not provide a link here. But, again, you don't need to do this unless you
want to upgrade the PyYMEL bundled with Maya.

With these definitions out of the way, let's learn how to use third-party modules
in Python.

Creating a site directory for
third-party modules

In the next three sections, we will learn how to prepare Maya to use third-party
modules. We will learn how Python's site directories work, create a site directory
for Maya, and hook up the new site directory so third-party modules are available
in Maya.

Before starting, I must make a disclaimer: there are no established conventions for
setting up Maya to use third-party modules. In this book I present what I think is

a middle ground between correctness and complexity. If you are comfortable with
Python package management systems and virtual environments, you can take a
more complex but also more correct approach. If you are just starting out and don't
even feel comfortable with what's presented here, you can also place third-party
modules into your development root and sidestep the entire issue of segregating
third-party and first-party code.

The most important thing, in my opinion, is that you are reusing code from others,
and not wasting effort reinventing the wheel.

Explaining the site directory

The third-party modules for a Python installation are in its site-packages
directory. Its location is dependent on the operating system but is usually something
like <PythonRoot>/Lib/site-packages. If you look at your sys.path in Python,
as we did in Chapter 1, Introspecting Maya, Python, and PyMEL, you will see the
site-packages directory is present.

[298]

Chapter 9

If there is a spam. py file inside of site-packages, it will be importable in Python
through import spam. Of course, you can also use a Python package instead of a
module. Recall that a Python package is a folder withan __init__ .py file (and
usually other files) inside.

In the case of a clean Python install, the site-packages directory is empty. For
Maya's Python, the site-packages directory contains maya and pymel folders. This
is where the code comes from when you call import maya.cmds or import pymel.
core. We will define a new site directory in the next section to control where Maya
loads third-party modules from.

Creating a new site directory for Maya

As previously mentioned, Maya already has a site-packages directory. However,
it is generally a very bad practice to modify program installation directories for
various reasons. It is such a bad idea that most modern operating systems restrict
non-administrator access to installation directories. So instead, we will create a
thirdparty folder which will contain third-party modules. We will add to this
directory later in the Working with Python distributions in Maya section.

The thirdparty folder will be next to our development root, which for this book has
been the ¢: \mayapybook\pylib directory. So our third-party modules will go in the
C:\mayapybook\thirdparty directory. Go ahead and create that directory now.

Establishing the site directory at startup

After creating our folder, we need to tell Maya that the thirdparty directory is a site
directory so it will load modules from there. There are a number of ways to do this.
My suggested way is to use a sitecustomize.py module, as explained in the site
module's documentation at https://docs.python.org/2/library/site.html.
Unlike using the -command flag or a userSetup. py file, this will also ensure the
necessary code is run when using the mayapy interpreter.

In your development root, which we put in our sys.path in Chapter 1, Introspecting
Maya, Python, and PyMEL, create a sitecustomize.py file. We will use relative paths
to find the thirdparty directory. Type the following code into the c: \mayapybook\
pylib\sitecustomize.py file. Obviously you will need to adjust for the location of
your thirdparty directory and operating system:

import os
import site
site.addsitedir (
os.path.join(os.path.dirname(file), '..', 'thirdparty'))

[299]

https://docs.python.org/2/library/site.html

Becoming a Part of the Python Community

When Maya or mayapy start up, they will import this file and turn the
thirdparty directory into a site directory. Python modules and packages
in there are now importable.

Note that sitecustomize and usercustomize are imported during the startup of
the Python interpreter. You should avoid doing any work that isn't about setting up
the Python environment. For example, the sitecustomize.py file would not be an
acceptable place to create custom Maya menus! Use a userSetup. py file or some
other mechanism for this.

Working with Python distributions
in Maya

Now that our thirdparty folder is available to Maya, let's add some modules to it.
First we'll see how to find packages on the Python Package Index. Then we will add
source distributions and binary distributions to the directory. We will also go over
some caveats using third-party modules in Maya on Windows systems. Finally, we
will briefly look at pip, Python's package management tool.

Using the Python Package Index

The Python Package Index (PyPI) at http://pypi.python.org contains a nearly
comprehensive list of community-developed Python modules that you can browse,
install, and use however you need. PyPI is not just important for hosting files but
for providing a common interface for users and tools to pull down information and
packages, as we'll see later.

Using PyPI's website should be self-explanatory. You can search for packages and
download distributions. We will install a distribution in the next section.

Adding a source distribution to Maya

A project that consists of only Python code is usually distributed as a source
distribution, which is an archive such as .tar, .gz, or . zip. An example of a project
that uses a source distribution is the mock library at https://pypi.python.org/
pypi/mock/. Download the latest version from its PyPI page. Open the archive and
copy mock.py into C: \mayapybook\thirdparty. Assuming that the thirdparty
directory is set up as a site directory in Maya, you can now use mock from within
Maya and mayapy.

[300]

http://pypi.python.org
https://pypi.python.org/pypi/mock/
https://pypi.python.org/pypi/mock/

Chapter 9

Putting third-party modules into the thirdparty folder allows us to keep them
segregated from our own code, which we have in ¢: \mayapybook\pylib. It has a
few drawbacks, however.

* It can be difficult to know what version of a module is in use. The source files
do not always contain version information. When you run into a bug or need
to upgrade, you usually want to know what version you are using, so you can
see any backwards-incompatible changes introduced, bugs that have been
fixed, and features added. To mitigate this, you can include the egg-info or
similar folder from the distribution, which usually contains this information.

* Dependencies of the module need to be installed manually. For example, if
mock depended on some other third-party module, we'd need to install both
of them by hand. To get around this, you can use pip, which is covered in the
upcoming Using pip to install third-party modules section.

* For packages with compiled C extensions, you cannot just copy code out of
the source archive like we did for mock. You will need to properly install the
third-party module and copy the files into the thirdparty directory. Refer to
the next section for more information.

Even with these drawbacks, I've successfully used this strategy with few regrets.
There are certainly improvements that can be made, but for most setups this
technique should be enough.

Adding an egg or wheel to Maya

Some projects have code written in C that must be compiled before the module
can be used. Many projects provide precompiled binary distributions for various
Windows and OS X platforms.

A binary distribution is packaged as a wheel (.wh1) or egg (.egg) file. These formats
are actually just . zip files with a different extension. You can support binary
distributions in Maya using the same techniques we used for source distributions in
the previous section. Extract the code from within the archive into the thirdparty
directory and it should be usable in Maya and mayapy. Just make sure you get the
right binaries for your operating system and Maya's version of Python!

On Linux, it is assumed that the code will be locally compiled, so binary distributions
are usually not available. To acquire compiled files, you have three choices:
* Compile the files yourself from the package's source distribution.

* Use a Python package manager, as we will do in Using pip to install
third-party modules.

[301]

Becoming a Part of the Python Community

* Use your system's package manager. For example, on an Ubuntu/Debian
Linux 64-bit machine with a default Python 2.6, you could do sudo apt-get
install python-zmg, and then copy the installed zmq files from /usr/1ib/
python2.6/dist-packages into ~/mayapybook/thirdparty.

If a binary distribution is not available for OS X, you should follow the preceding
instructions for Linux.

Using binary distributions on Windows

On Windows, there are two significant complications.

The biggest issue is with Maya 2013 and newer. PyPI's binary distributions will not
work. They are compiled with Visual Studio 2008, which is the compiler normally
used for Python 2.6 and 2.7. However, Maya 2013 and newer are compiled with
more recent Visual Studio compilers. Maya 2013 and 2014 use Visual Studio 2010,
and Maya 2015 uses Visual Studio 2012. This means the normal Python Windows
binaries will not work. You need to compile from source using the appropriate
Visual Studio compiler. I do not provide instructions for doing so in this book. You
can also check out http://www.robg3d.com/maya-windows-binaries/, which
hosts precompiled binaries for various versions of Python and Maya.

The second problem is that many packages on PyPI do not provide binary
distributions at all, and Windows does not have a C compiler by default. Fortunately,
you can find many precompiled Python libraries for Windows at http://www.1£d.
uci.edu/~gohlke/pythonlibs. Unfortunately, they are usually .exe files, not
wheels or eggs. To work with these binaries, you should:

1. Install a standard Python interpreter that matches the Python version of the
Maya you are using,.
Download and install the required . exe packages to that interpreter.
Copy the files from the interpreter's site-packages directory into the

C:\mayapybook\thirdparty directory.

Installing binary packages is not always painless, especially on Windows. If you run
into problems, seek help from one of the sources listed in the Engaging with the wider
community section.

[302]

http://www.robg3d.com/maya-windows-binaries/
http://www.lfd.uci.edu/~gohlke/pythonlibs
http://www.lfd.uci.edu/~gohlke/pythonlibs

Chapter 9

Using pip to install third-party modules

You can use Python's package management tool, pip, to install third-party modules.
You can install pip by following the instructions at http://pip.readthedocs.org/
installing.html. It involves downloading and running the get-pip.py file. I would
install it for a standard Python interpreter, and not for mayapy.

On Linux, OS X, and properly configured Windows systems, pip will compile C
extensions as well. For the binaries to be usable in Maya, however, the interpreter
needs to be compatible with Maya's. This is not a big deal on OS X and Linux but is
a problem on Windows, as detailed earlier.

You can use pip to install modules into arbitrary directories such as the thirdparty
directory using the - -target option (there are many other ways to do this). For
example, to install the PyZMQ package there, you can run:

pip install --target=C:\mayapybook\thirdparty pyzmqg

Note that pip will also install dependencies by default, so it can be much easier to
use pip to install modules than doing it by hand.

Contributing to the open source
community

At this point, you should be able to use open source code from other people in a
way more maintainable than copying and pasting the bits you need into your own
scripts. Inevitably, at some point while using third-party code you will find a bug
or some vital missing feature. You will be at a crossroads and must decide between
the following:

* Throw away the existing code and build your own. In the open source world,
this is almost never preferable. If you are tempted down this path, think
twice. The less experience you have with a problem, the more likely you are
to underestimate how much work went into solving it. Since you are using
someone else's library to solve a problem, the existing code is likely better
than the first thing you'd come up with. Throwing away code is throwing
away knowledge!

* Edit your local copy of the code. While less tragic than abandoning the open
source version entirely, this is still a bad decision. When you upgrade to a
newer version of the code, you will lose your work. Also, no one benefits
from your changes.

[303]

http://pip.readthedocs.org/installing.html
http://pip.readthedocs.org/installing.html

Becoming a Part of the Python Community

* File a bug or issue with the project's issue tracker, edit your local copy, create
a patch, and submit the patch as a fix. From there, you may need to iterate on
the patch and watch for when it gets into a release so you can upgrade and
overwrite your local version. This is how many open source projects are run,
and contributing this way is relatively lightweight and flexible.

* Finally, with some version control systems (such as Git), you can fork a
source repository, make your changes, and use that. Then you can create a
pull request to the original source repository to look over and potentially
bring in your changes. This is, in the eyes of many (including myself), a
superior model.

The last two points would require several pages to cover and the exact steps are
often specific to where the open source project is hosted. Check out the README
or developer's guide for the project you are using, or see how a similar project is
doing it.

The key thing to keep in mind here is that you should almost never edit open source
code locally without trying to get those changes back. Not only is it short sighted by
creating a maintenance burden, but it is bad for your personal development: you can
learn a lot by contributing even a trivial fix to an open source project. It's also bad
for the health of the project you are benefiting from. The more active a project is, the
healthier it is, and authors usually love when users want to help out.

Designing Maya Python code for open source

In Chapter 2, Writing Composable Code, we discussed the concept of reusable code and
libraries in some detail. Designing an open source project is an extension of this, and
requires a somewhat different way of thinking about how code is structured.

A good open source library is focused around a single domain, and depends on other
libraries for when it needs to work in other domains. An example project would

be boto (https://github.com/boto/boto), a Python interface for Amazon Web
Services (AWS). As an example of the first principle (focusing on a single domain),
boto is not some sort of generic Amazon Python APL. It is for AWS and AWS alone.
As an example of the second principle (reusing other libraries), boto uses libraries
including requests (https://github.com/kennethreitz/requests) and rsa
(https://bitbucket.org/sybren/python-rsa) for making HTTP requests and
working with cryptography, respectively.

[304]

https://github.com/boto/boto
https://github.com/kennethreitz/requests
https://bitbucket.org/sybren/python-rsa

Chapter 9

If we were to graph out how a project can be designed, with dependencies on one
axis and how many different things it does on the other, we'd want to target few
enough dependencies to manage effectively and enough unique functionality to
make it useful. This sweet spot is marked on the following image:

Dependencies

Well Designed

Libraries
Features

The unfortunate truth is that the vast majority of scripts available in the 3D
community do not fall into this sweet spot. Authors reinvent basic functionality,
or sometimes copy in other libraries wholesale.

The difficulty here is that the technology and culture of the 3D space has colluded

to limit our exposure to OSS and best practices. There's been no good way to reuse
third-party code so the community hasn't learned the skills or habits required to
write, use, and trust code written by other people. A monolithic project was not only
the best choice in many cases, it was the only choice. Programs such as Maya did
not have any sort of package or dependency-management system. Maya still does
not have one, so if our code relies on boto, we would require that the user manually
install at least three packages for boto and its dependencies.

In order to break out of this unfortunate situation, we need to start by at least getting
away from monolithic package design. If your animation tools have a very nifty set
of utilities for working with skin weights, you should create the skinning utilities

as its own project, and layer on the user-facing features such as menus, toolbars,

and icons, in a separate project. This way, other developers can reuse your utilities
without the overhead of user-facing features they don't want.

[305]

Becoming a Part of the Python Community

As a final note about design, it should go without saying that configuration needs to
be extensible. For example, in Chapter 3, Dealing with Errors, we wrote some code that
sent an email if an error was raised. If we want to generalize and release that code as
open source, we would need to allow the email server and recipient to be configured.
We can do this by using any of the following options. We will use the third-party
nose library (http://nose.readthedocs.org) to illustrate each option:

* Pass the email server and address in as function arguments. This is preferable
if the design supports it. For example, you can pass a configuration object
into the nose . run function to control its behavior.

* Set the email server and address through environment variables. For
example, you can use the NOSE_VERBOSE environment variable to make nose
run in verbose mode and print diagnostic information.

* Set the email server and address through command line flags. You can
pass --verbose to the nose executable so it runs in verbose mode. Though
command line interfaces are an important topic in general, they can be
advanced and are not relevant to Maya so we will not cover them.

* Set the email server and address in a configuration file. This is often done
using a well-known filename in the current working directory or home
directory. For example, nose will load its configuration from a nose.cfg
or .noserc file if found. These configuration files use the . ini file format.
Another option is to use a Python file for configuration that is executed or
imported at runtime. The Sphinx project (http://sphinx.readthedocs.
org), used for building documentation, uses a conf . py file that is imported
at runtime. Sphinx provides a template conf . py for users to customize and
check into source control.

Making your project general enough to be reused is an investment, but it pays off

not only for future users (since they could not reuse your code without editing the
source in a custom way), but for you as well (your code becomes less coupled and
more data-driven).

Starting an open source project

Once you're comfortable with using and contributing back to open source projects,
you may want to start your own. This is a very noble thing. Before you start, however,
you should ask if someone else doing the same thing already. If the answer is even
marginally yes, you should contribute to the existing project instead of starting your
own, especially early on. Once you have used and contributed to it and you are still
unsatisfied, you'll be in a much better place to start a new project. You can also make a
competing fork of the existing one. To fork is to take a copy of a project's code, and do
things with it that aren't meant to integrate back into the original version. It splits the
community and isn't something to be done lightly.

[306]

http://nose.readthedocs.org
http://sphinx.readthedocs.org
http://sphinx.readthedocs.org

Chapter 9

Assuming you want to go ahead with a new project, you need to pick a way to host
it, which also may decide your source code management (SCM). The de facto way to
host an open source project right now is to use GitHub (http://github.com), which
uses Git source control (http://gitscm.com/), or Bitbucket (https://bitbucket.
org/), which supports Git and Mercurial (http://mercurial.selenic.com/).

The acronym "SCM" can expand out to many different phrases that all
% mean the same thing: a way to version files. Perforce, Subversion, Git,
’ Mercurial, and CVS are all types of SCM or version control systems.

Once you decide on SCM and hosting, you should follow the tutorials on your site of
choice for creating a new repository.

When creating a new Python project, there are established conventions for how to
lay out your files. I should note that many older projects do not conform to this, even
popular ones like the Python Imaging Library and PyWin32, so you should make sure
you base your project off of libraries that follow good practices. The best source for
learning how to set up your Python code is Hitchhiker's Guide to Packaging, located at
http://guide.python-distribute.org/index.html.

. Some old or abandoned projects that do not conform to modern practices
% have been forked into new versions. The Python Imaging Library has a
A modern fork named Pillow, available at https://pypi.python.org/
pypi/Pillow/.

Once your repository and files are created, you can begin programming away and
building awesome stuff!

Distributing your project

The way you choose to distribute your project depends on who the users are. If your
project is a library, providing a set of functionality to be called through code, your
users are other developers. PYMEL, which we've used extensively in this book, is an
example of a library (or framework). As discussed earlier in this chapter, Python has
good ways of distributing and using libraries through PyPI, but they are unavailable
in Maya. But as long as your project is set up properly, it should be easy enough for
other developers to figure out how to reuse your code. You should also upload a
version to PyPI to make it easier to find.

[307]

http://github.com
http://gitscm.com/
https://bitbucket.org/
https://bitbucket.org/
http://mercurial.selenic.com/
http://guide.python-distribute.org/index.html
https://pypi.python.org/pypi/Pillow/
https://pypi.python.org/pypi/Pillow/

Becoming a Part of the Python Community

If your project is more of an application, which in the Maya context means it presents
tools to the other, you need to figure out how you want to install your code onto

a user's machine. The easiest way to distribute an application is to upload it to a
script-hosting site like http://creativecrash.com with installation instructions.
Installation usually consists of the user extracting files into a directory and editing

a file so your code will be run when Maya starts up. You can also get more creative,
with the installer being a Python script that downloads the full code. At the top end
would be an auto-updating project.

R Remember, even if your end goal is to distribute your tools to users
~ in the form of shelves and menus, you should develop most of the
Q functionality as libraries that can be distributed and consumed
independent of the tools.

Neither of these last two options is particularly difficult to implement, but neither
are they particularly robust either. Maya is not set up for this sort of thing, and trying
to shoehorn a sensible package manager done in an ad hoc way can be error prone
and more trouble than it's worth. My hope is that at some point in the next few

years, Autodesk adds a sensible package manager to Maya that will begin to solve
these problem:s.

Engaging with the wider community

In this chapter, we have focused mostly on how to use and contribute to open
source software. While the coding part of open source is certainly vital, focusing
only on code misses the larger point of open source. Open source, by its very
nature, encourages a robust and active community. Knowing how to engage with
the community will make you a more effective developer because you will have
more resources available to you. Beyond that, it's worth thinking about the sense
of fulfillment you get from helping people, and the good karma others can earn by
helping you.

Most discussion about Python, and for many open source projects in general,
happens on mailing lists. The official python. org mailing lists can be found at
https://mail.python.org/mailman/listinfo. Also of interest is the comp.lang.
python Usenet group. Quite a community has sprung up around Python, centered
on its mailing lists and other groups.

There are other more general resources, such as the question and answer website
http://stackoverflow.com, though they lack some of the tight-knit Python
community flavor.

[308]

http://creativecrash.com
python.org
https://mail.python.org/mailman/listinfo
http://stackoverflow.com

Chapter 9

Popular individual projects usually also have their own discussion forums, mailing
lists, Usenet/Google groups, and IRC channels. All of these resources are incredibly
valuable and we are lucky to have them. Make sure to use them!

For Maya Python issues, the situation is a bit different since it doesn't have the
same type of open source community. Two Maya programming forums are those
at Autodesk's Area (http://autode.sk/1gLutSc), and CG Society (http://bit.
ly/1jpMrpm). I usually choose the latter over the former since it's more active and
the community seems to be more cohesive. If you prefer newsgroups over forums,
there is the Python Inside Maya Google Group located at https://groups.google.
com/forum/#! forum/python inside maya.

For Maya Python issues and 3D application scripting in general, there's
http://tech-artists.org, which is a forum for technical artists and those that
do the technical and programming side of 3D work. I am one of the founders of
tech-artists.org.

Finally, blogs are an excellent way to learn and spread knowledge. There are two
especially relevant feed aggregators. The first is http: //planet.python.org, an
aggregator for most of the popular Python blogs. The second is http://planet.
tech-artists.org, a feed aggregator for many popular technical artist blogs. Of
course, both sites run aggregation software written in Python. I also have a blog at
http://www.robg3d.com.

Summary

In this chapter, we took a tour around the Python community. We learned what
Open Source Software is and how it underpins Python the language and its
ecosystem. We saw how to find third-party Python modules and what a Python site
directory is. We set up Maya with its own site directory and learned how to add
modules to it. We learned about source and binary distributions, and some issues
specific to Windows. We then went over what's involved in creating a new open
source project, including its design, hosting, and distribution. Finally, we took a
quick tour around the wider community.

[309]

http://autode.sk/1qLutSc
http://bit.ly/1jpMrpm
http://bit.ly/1jpMrpm
https://groups.google.com/forum/#!forum/python_inside_maya
https://groups.google.com/forum/#!forum/python_inside_maya
http://tech-artists.org
tech-artists.org
http://planet.python.org
http://planet.tech-artists.org
http://planet.tech-artists.org
http://www.robg3d.com

Python Best Practices

In this book, we used many Python features without diving into the details about
how they work. There were also various other issues that were mentioned which
could use more explanation. In this appendix, we will cover those topics in more
detail. This chapter does not need to be read sequentially; if you are familiar with a
topic, feel free to skip its section.

The args and kwargs parameters

We frequently use functions and methods with asterisk or star characters (*) in their
definitions, as shown in the following code snippet:

def spam(*args, **kwargs):

Programmers unfamiliar with Python are often puzzled when they encounter this for
the first time. What does the single and double asterisk/star character do?

We'll start with *args. The single * character tells Python that the function takes a
variable number (zero or more) of positional parameters.

>>> def countargs (*args) :
print 'Passed in', len(args), 'args.'
>>> countargs('a', 'b', 'c')
Passed in 3 args.
>>> countargs ()
Passed in 0 args.

Python Best Practices

You can combine normal positional parameters and *args to require some arguments.
The os.path. join method, for example, requires at least one positional argument. Its
signature is os.path.join(a, *p).

>>> import os

>>> os.path.join('a', 'b', 'c')

"a\\b\\c'

>>> os.path.join('a'")

g0

>>> os.path.join()

Traceback (most recent call last):

TypeError: join() takes at least 1 argument (0 given)

In the last call to os.path.join, we did not supply any arguments, so a TypeError
was raised.

You can also use the * character when calling a function to expand a sequence (such

as a list or tuple) into positional arguments. This does not require the function being
called has a *args parameter. It can be used to expand to any positional arguments.
For example, if we use the countargs function defined previously with a list of values,
we will get two very different results depending on whether we use a * to expand the
list when countargs is called.

>>> items = ['a', 'b', 'c']
>>> countargs (items)

Passed in 1 args.

>>> countargs (*items)
Passed in 3 args.

The first call to countargs would be equivalent to countargs (['a', 'b', 'c'l).
It passes the list as the only argument. The second call would be equivalent

to countargs('a', 'b', 'c').It passes each item in the list as a separate
positional argument.

The **kwargs parameter is basically the same as *args, but for keyword instead
of positional parameters. The ** characters tell Python a function takes a variable
number of keyword parameters.

>>> def countkwargs (**kwargs) :
print 'Passed in', len(kwargs), 'kwargs.'
>>> countkwargs (a=1, b=2)
Passed in 2 kwargs.
>>> countkwargs ()
Passed in 0 kwargs.

[312]

Appendix

Just like you can specify both required and variable positional parameters (as we saw
in os.path.join), you can specify regular keyword parameters along with using
**kwargs.

>>> def countkwargs2 (strfunc=None, **kwargs) :
msg = 'Passed in %s kwargs.' % len(kwargs)
if strfunc:
msg = strfunc(msg)
print msg
>>> countkwargs2 (strfunc=str.upper, a=1)
PASSED IN 1 KWARGS.
>>> countkwargs2 (str.lower, a=1, b=2)

passed in 2 kwargs.

As the second call to countkwargs2 shows, you can still use normal keyword
arguments by either position or name.

And finally, you can use ** to expand a mapping, such as a dictionary, into keyword
arguments that are passed into a function:

>>> mapping = dict(a=1, b=2, strfunc=str.upper)
>>> countkwargs2 (arg=mapping)

Passed in 1 kwargs.

>>> countkwargs2 (**mapping)

PASSED IN 2 KWARGS.

The *args and **kwargs parameters are important features of Python with many
useful applications, just a fraction of which are presented in this book. They allow a
level of dynamic programming that would otherwise be extremely difficult.

As a final note, the names args and kwargs are convention only. You can just as well
name them *spam and **eggs.

String formatting

You will need to know a few things about string formatting to follow along with
this book's examples. The topic itself can get very deep, but we will just stick to
some basics.

There are two types of string formatting in Python. The older and still popular
version uses the percent character (%), while the newer and more flexible version
uses the format method on strings. Here is a very basic example of each.

>>> name

>>> 'Hi, %s!' % name

[313]

Python Best Practices

'Hi, Jon!'
>>> 'Hi, {0}!'.format (name)
'Hi, Jon!'

We use the % version exclusively in this book because it is more concise. I would
encourage you to use the format method for new code. Translating this book's
examples should be straightforward.

Inside the string being formatted, the % character indicates something that will be
replaced, and the characters following the % specify how it will be replaced. For
example, consider the difference between %s and %r.

>>> '%s' % 'hi'

Thit

>>> 'Sr' % 'hi'
YRR

>>> str('hi'")
Thit

>>> repr('hi')
wihite

The %s sequence converts the argument being formatted using the str function,
whereas the $r sequence uses the repr function. We will use %s and %r almost
exclusively, but two other common format characters that are good to know about
are d and f for integer and floating point representations.

>>> '%d' % 100.0
'100"

>>> '%03d' % 10
'010"

>>> '%f' % 1
'1.000000"

>>> '$.3f' § 1

'1.000'

If the format string has only one positional replacement, the argument can be a tuple
with a single value, or a value that is not a tuple. If the format string needs multiple
positional replacements, the value should be a tuple with a number of items equal to
the number of replacements needed. If the two do not match (there are too few or too
many arguments to format), a TypeError will be raised.

>>> 'Hi, %s!' % ('Jon',)

'Hi, Jon!'

>>> '%s, %s!' % ('Hi', 'Jon')
'Hi, Jon!'

>>> '%s, %s!' % 'Hi'

[314]

Appendix

Traceback (most recent call last):

TypeError: not enough arguments for format string

>>> '%$s' % ('Hi', 'Jon')

Traceback (most recent call last):

TypeError: not all arguments converted during string formatting

Finally, you can also use keywords for formatting strings. The keyword name goes
between the % and format characters, like % (keyword) s. Instead of a tuple you
provide a mapping, such as a dictionary, after the % operator. The mapping's keys
and values become the format string's keywords and the values being formatted.
Extra keys are ignored.

>>> mapping = {'value': 1.2345, 'units': 'km', 'ignore': 1}
12 [

% (value) .3f% (units)s' % mapping
'1.234km'

>>>

An interesting Pythonic idiom is to use the 1ocals () function as the mapping. The
locals () function returns a dictionary where each key and value is a variable and
its value.

>>> value = 1.2345
>>> units = 'km'

>>> '%(value) .3f% (units)s' % locals()
'1.234km'

There is a lot more to string formatting but this section covers the basics. If you need
more in-depth instruction, resources abound on the Internet.

String concatenation

In a few places in this book, we built short strings into longer strings. This process is
called string concatenation. We often did this through the str.join method:

>>> planets = 'Venus', 'Earth', 'Mars'
>>> ', '.join(planets)
'Venus, Earth, Mars'

We also used string formatting;:

°

>>> '%s, %s, %s' % planets
'Venus, Earth, Mars'

Why didn't we use string addition, such as:

>>> planets[0] + ', ' + planets[1l] + ', ' + planets([2]
'Venus, Earth, Mars'

[315]

Python Best Practices

When adding more than two strings, Python ends up creating temporary strings.
When the strings are large, this can cause unnecessary memory pressure. Consider
all the work Python has to do when adding more than two strings:

>>> a = planets[0] + ', '
>>> b = a + planets([1]
>>> c =Db + ', !

>>> d = ¢ + planets([2]
>>> d

'Venus, Earth, Mars'

Of the four strings created to get our result, three of them were immediately
unnecessary!

String addition should be avoided when concatenating more than two strings.
As a bonus, using addition requires the most code and it is extremely unreadable.

Raw strings and string literals

In order to represent something like a new line in a string, you usually use a special
series of characters: \n. "\n" is an escape sequence that indicates to whatever is using
the string (writing to a file, printing to the console) that there is a newline present.
For example, we can see "\n" in action quite easily:

>>> print 'hello\nworld'
hello
world

There are many escape sequences of which "\n" is just one. A problem can occur
when you want an actual backslash in the string, such as for file paths on Windows
operating systems. We need to escape the actual backslash with another backslash
so the path will be interpreted properly. The first example in the following code is
not escaped, so the results are printed on two lines. The second example is properly
escaped, so the path prints properly, on a single line.

>>> print 'C:\newfolder'
C:

ewfolder

>>> print 'C:\\newfolder'
C:\newfolder

[316]

Appendix

Because of this double-backslash inconvenience, we will sometimes use raw strings.
A raw string is prefixed with the r character and it tells Python that the string should
not be interpreted with escape sequences. In the following example, notice how the
leading r causes the string to print properly, on a single line.

>>> print r'C:\newfolder'
C:\newfolder

I most commonly use raw strings to get around the double-backslash path issue on
Windows, as I find the double-backslashes make the code significantly more cluttered.

Path building and manipulation

You will often have to construct file system paths using Python. For example,
given the variable mydir which points to some path, you may want to get the path
two folders up:

otherdir = mydir + '\\..\\..'

Do not build or manipulate paths this way. There are a number of things wrong
with this code. The obvious problem is that it is platform-dependent. Windows and
Linux-based systems use different path separators.

Even more importantly, this code (and code that uses the value of otherdir) can
break depending on the value of mydir and which operating system is being used. In
Windows, drive roots like C: \ are usually returned with a trailing slash, while other
folders, like C: \Windows, are not. There are all sorts of other edge cases that can
cause bugs if you do not handle paths properly.

As another strike against it, adding paths has the same downsides as adding strings,
including poor performance and readability. Refer to the String concatenation section
from earlier.

These problems are totally unnecessary. Python includes a robust set of path
manipulation functionality in the os.path module. Use it. The correct version of
the preceding code would be:

otherdir = os.path.join(mydir, '..', '..')

The os.path module also includes a number of OS-dependent variables, such as
os.path.sep (the folder separator character) and os.path.pathsep (the separator
between paths in an environment variable). There are also higher-level path
manipulation libraries available, such as the pymel.util.common.path module.

Finally, you will find that doing path manipulation properly creates code that is easier
to read, and you will be unable to tolerate building paths with inferior techniques.

[317]

Python Best Practices

Unicode strings

I can think of nothing else that has caused programmers more confusion than
Unicode strings. I will not even attempt to explain the issues surrounding Unicode,
but I feel it's important to bring up so when you see something like the following,
you will be prepared.

>>> import pymel.core as pmc
>>> xform = pmc.polyCube () [0]
>>> myname = 'cubexform'

>>> xform.rename (myname)

>>> xform.name ()

u'cubexform!'

Unicode strings in Python 2 are prefixed with a u character. So how come even
though we named our node using a "regular" (byte) string with no prefix, we got
back a Unicode string from the xform.name () method?

Well, "regular" strings in Python 2 (the str type) support ASCII characters only.
ASCll is able to represent a very limited number of characters, but all the characters
of the world can be represented by the Unicode system. So if you are creating a
program that needs to be localized or support more than basic English, your strings
need to be Unicode. Autodesk Maya needs to be localized, of course, so all the user-
facing strings are Unicode.

Fortunately the two types share the same base class (basestring) and compare
equal, so cause minimal inconvenience for us most of the time.

>>> myname == xform.name ()

True

>>> type (myname), type (xform.name())
(<type 'str's, <type 'unicode'>)

>>> str. mro_
(<type 'str's, <type 'basestring's, <type 'object's>)

>>> unicode. mro_

(<type 'unicode's>, <type 'basestring's, <type 'object's>)

Most people programming in Maya can get by without understanding Unicode
or localization. If your needs get more complex and you need to build localizable
tools or applications (for example, to supply translated tools to another studio), be
prepared to do a significant amount more work and testing. These topics are well
outside of the scope of this book, though, so we will just leave our discussion of
Unicode here.

[318]

Appendix

Using the doctest module

All of the example code in this book that is executed at the interactive interpreter
(like the String formatting example code in this appendix) was created using Python's
doctest module. The doctest module allows the writing of executable test code
within the docstrings of modules, classes, functions, and methods. It is a great way
to not just test your code, but provide executable documentation. For example, we
could create a file C: \mayapybook\pylib\doctestexample.py with the following:

def adder(a, b):

Return a added to b.

>>> adder (1, 2)

3

>>> adder('a', 'b')

labl

>>> adder (1, 'b')

Traceback (most recent call last):

TypeError: unsupported operand type(s) for +: 'int' and 'str'

return a + b

Now if you run this file through the doctest module, it will run all the prompt-like
lines and ensure they produce the correct result. If the module is successful, you will
get no feedback.

> mayapy -m doctest doctestexample.py

If we change one of the tests to force a failure (for example, change adder (1, 2) to
adder (1, 3))and run the command line again, we should get the following feedback:

> mayapy -m doctest doctestexample.py

khkkkhkhkhkhkhkkhkkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhhkhkhkkkhkhkhkhkhkkhkkhkhkkkhkkkhkkkkkkkkkkkk

File " C:\mayapybook\pylib\doctestexample.py", line 6, in doctestexample.
adder

Failed example:

adder (1, 3)
Expected:

3
Got:

4
khkhkhkkkhkhkhkkkhkhkhkhkhkhkkkhkhkhkhkhkhkkkkhkhkhkkhkkkkkhkhkkkhkkkkkhkkkkkhkkkkhkkkkkkkkkkkk
1 items had failures:

1l of 3 in doctestexample.adder

Tegt Failed 1 failures.

[319]

Python Best Practices

There is a lot more to doctest that isn't covered in this section, including how to
customize the way it runs. I mention doctest here for two reasons. The first is that it
was used extensively behind the scenes to develop the code for this book. If you look
at the source code repository (see the Using the GitHub repository for this book section
later in this appendix), you will see it used in every chapter. It was an essential tool
for writing correct examples.

The second reason I mention doctest, which is personal for me, is that doctest
was my first introduction to unit testing. I consider unit testing an essential Python
practice (see the Starting Test-Driven Development section next). It is much easier to
get into doctest than any unit testing framework, and even when you start to use
a different test framework heavily, using doctest to achieve correct, executable
examples in your docstrings is a great practice.

If you have never done automated testing in Python, I highly recommend taking a
look at doctest.

Adopting Test-Driven Development

I've mentioned several times in this book that I am an advocate of Test-Driven
Development, or TDD. TDD means writing tests before writing feature code, and
sticking to TDD is a proven way to generate high-quality and maintainable software.

But what is a section about TDD doing in an appendix of a book about using Python
inside Autodesk Maya?

An instructional book is about growth. Both mine and yours. I hope that learning
about the OpenMaya API will encourage your creativity. I hope that building a
request-reply framework will increase your productivity. I hope that the several
chapters we spent learning techniques towards building better code will grow you
into a better programmer.

But all the growth and improvement the chapter topics can possibly inspire pales
in comparison to what you can do if you adopt Test-Driven Development. It is the
single most important technique you can use to make your programming life better
(and an improved programming life often leads to an improved personal life!).

If you are looking to get started with TDD, I'd suggest starting in standard Python,
leaving Maya alone for the time being. Find some good tutorials or examples, and
just dive in. It takes rigor and practice, but keep at it and your programming will
be transformed.

[320]

Appendix

Using the GitHub repository for this book

All the code samples in this book are hosted in a GitHub repository at https://
github.com/rgalanakis/practicalmayapython. There are folders for the code in
each chapter and appendix. In many cases, there is some divergence between code in
the book and the source code, usually done to avoid duplication or to remove clutter,
but it should be easy to find the source code for the chapter samples.

In general, running a file through the mayapy interpreter should execute the code
and/or tests in the file. Code entered at the interactive prompt is usually in the
interactive.py file in the chapter's directory. Most functions that can be tested
automatically have unit tests written. Code for GUIs, which cannot be automatically
tested so easily, should be simple enough to run by copying and pasting the code
into the Script Editor and then executing it. To make examples more clear and
concrete, many paths are hard-coded. You will need to change those paths to
whatever is appropriate for your environment.

Few things annoy me more than code in technical books that does not work. If you
find broken examples, they are probably due to an unfortunate copy and paste error
from IDE to word processor, or some written instructions I did not test thoroughly
enough. Also watch out for mixing tabs and spaces; Python code should be using
four spaces for indentation, and never tabs. I sincerely apologize for any mistakes,
and ask that you follow the instructions in the Preface for reporting problems, or
create an issue in the GitHub repository.

[321]

https://github.com/rgalanakis/practicalmayapython
https://github.com/rgalanakis/practicalmayapython

Symbols

__init_ method 220
_normalize function 99
.py suffix 248
_py_to_helpstr function 28
%r sequence 314

%s sequence 314

A

accidental complexity 61
add_influences function 74
addNameChangedCallback function 245
advanced decorator concepts
about 138
decorators, defining with
arguments 138, 139
decorators, stacking 139, 140
PyMEL attributes, decorating 139
PyMEL methods, decorating 139
Python's decorator library, using 140
alternatives, hierarchy converter GUI
complete test setup 162
functions versus classes 161
specific versus general controller 161
Amazon Web Services (AWS) 304
application
hooking up, to be effected by hierarchy
converter GUI 156-158
application events
simulating 160, 161
application level
exceptions, handling at 83, 84
Application Programming
Interface (API) 217

Index

args parameter 311-313
arguments
decorators, defining with 138
assignUVs method 233
asterisk character 311
at_time context manager
building 126
attribute 218
Autodesk 263
Autodesk 3ds Max 118
automated tests
running, in Maya 214
automation 179
automation system
batch processing, with Maya 211, 212
control, supporting from remote
computer 215
improvements 211
multiple applications, supporting 215
multiple languages, supporting 215
object-oriented system, designing 216
practical uses 211
RPC frameworks, evaluating 216
support, adding for logging 214, 215
automation system, designing
about 184
client and server, pairing 184
client-server handshake 185-187
exceptions, handling between client
and server 189-191
requests, serializing 188
responses, serializing 188
server, bootstrapping from client 185
server loop, defining 188
working of server, selecting 189

B convert_hierarchies function,
implementing 66

background thread convert_hierarchies_main function,
used, for sending email 107 implementing 65
batch mode 192 convert_hierarchy function,
batch processing, Maya 211, 212 implementing 68
benefits, node factory decomposing, into composable
extensible 273 functions 66-68
intuitive and consistent 273 inevitable modification, supporting 69-72
less code and duplication 273 stubbing out 64
lightweight 273 writing 63
best practices, Python child class 18
args parameter 311-313 child process 196
doctest module, using 319, 320 circle node
GitHub repository, using 321 about 260
kwargs parameter 311-313 frames attribute 261
path, building 317 input attribute 261
path, manipulating 317 scale attribute 261
raw strings 316 class methods 31
string concatenation 315, 316 client-server handshake 185-187
string formatting 313-315 closures
string literals 316 about 60,114
TDD, adopting 320 using 60
Unicode strings 318 code
binary distribution simplifying, custom types used 220, 221
about 301 code objects
using, on Windows 302 inspecting 97, 98
binding 144, 183 code smell 44, 264
Bitbucket command flag
URL 307 adding 252-254
boilerplate 47 command line options 192
Boolean flags community
usage, avoiding 44, 45 engaging with 308, 309
bootstrapping 185 composable code
bound methods 32 about 41
built-in exceptions anti-patterns, identifying 42, 43
URL 79 Boolean flags, avoiding 44, 45
defining 41, 42
C first item, obtaining in sequence 46, 47

head function, writing 48

callable method 113 legacy code, evolving into 45

callbacks rewriting 46
about 146 tail function, writing 48
OpenMaya, used for 243-246 compute method

caller 123

. abstraction, creating for 285
cargo cult programming 260 creating 266, 267
catch keyword 92

character creator

[324]

connection strings 183, 184
container widget
defining 153, 154
contextlib module 121
context managers
about 111,118
creating 119, 120
undo_chunk context manager, writing 121
undo_on_error context manager,
writing 122
versus decorators 123
context managers, for scene state
about 124
at_time context manager, building 126
set_file_prompt context manager,
building 125
set_namespace_active context manager,
building 127,128
set_renderlayer_active context manager,
building 127
with_unit context manager,
building 126, 127
contribution, to open source community
about 303, 304
Maya Python code, designing for
open source 304-306
open source project, starting 306, 307
project, distributing 307, 308
contract 55
control widget
defining 153, 154
convert_hierarchies function
implementing 66
convert_hierarchies_main function
implementing 65
convert_hierarchy function
implementing 68
CPython 118
CPython source code repository
URL 296
create_plugin function 251
create_syntax function 254
critical path 85
custom types
used, for simplifying code 220, 221

D

data types, PyMEL 21-23
debugging 84
declarative code 272
decorator library
using 140
decorators
about 111-113
creating, for recording metrics 133
defining, with arguments 138
doing 140
explaining 113-116
exporter, wrapping with 117
stacking 139, 140
URL, for blog posts 113, 140
URL, for information 140
versus context managers 123
decorators, for metrics recording
duration, recording 134, 135
duration, reporting 135
errors, handling 136, 137
unique key, obtaining 134
denormalized_skin context manager
creating 129
performance concerns, addressing 131, 132
vertex influences, swapping 129, 130
dependency graph plugins. See also
node plugins
development root
selecting, for library 11,12
docstring
about 25, 53
writing, for skeleton converter library 52
doctest module
using 319, 320
draw method 222
dunder methods 28

E

Easier to Ask for Forgiveness than
Permission (EAFP) 37
ehook function 93
email
sending, background thread used 107
emit_selchanged function 167

[325]

exec_ method 151

execution scope 200

exit handler 196
sending 103, 104 expensive state

error e-mail contents dealing with 88, 89
assembling 100, 101 exporter

error handler wrapping, with decorators 117
background thread used, for sending expression 199

mail 107

creating 95 F
improving 96, 97, 106
installing 104
locals, capturing 107
log files, attaching 108
other mechanisms 107
user interface, adding 106

enumerate function 238
environment variables 192
error e-mail

failing fast 83
filtering behavior 43
filters
adding, based on filename 98-100
finally keyword 81

What If Two Programs Did This function
rule 105, 106 creating, in IDE 12, 13
error handling, Maya postcondition 55
about 88 precondition 55

exception design, dealing with 91
expensive state, dealing with 88, 89
Maya application, dealing with 92
Maya application, leveraging 92
mutable state, dealing with 88, 89
Python, leveraging 92

undo blocks, leveraging 90

function sets, Maya API 229

G

garbage collected 118
generational garbage collector 118
get_next_message function 152
get_type_hierarchy function 74

essential complexity 61

1 GitHub repository

o . URL 321

Python, controlling through 180 using 321
event l'oop 15.1 , 152,213 graphical user interface (GUI)
exception design about 143

deahpg with 91 crafting, rules 146
exception hook. See sys.excepthook GUI, crafting rules

'funftlon . .ui files usage, avoiding 147

exception info. See exc_info tuple command-style UL using 146
exceptions ’

pure PySide GUIs preference 146

about 77,78 GUI mode 192

exc_info tuple 82
handling, at application level 83, 84 H
traceback objects 81
try/catch/finally flow control 79-81
exception types 78, 79
except keyword 79 hash value
exc_info tuple 82 obtaining, of node 231, 232
exec head function
Python, controlling through 180 writing, for composable code 48

handshake 186
handshake port 187

[326]

hierarchy converter GUI inheritance

alternatives 161, 162 creating, by drawing shapes 221-225

application events, simulating 160, 161 inherited 221

application, hooking up 156-158 initializePlugin function 248

building 153 inner function. See closures

container widget, defining 153, 154 input/output (I0) 214

control widget, defining 153, 154 installation, PySide 147

creating 149 installation, ZeroMQ 181

designing 153 Integrated Development

event loop 151,152 Environment. See IDE

executing 152 interactive mode 10

hooking up, to be effected by introspection function
application 158, 159 creating 15, 16

integrating, with Maya 162 IPC

main Maya window, getting as problems, handling with 181
OMainWindow 163, 164 IronPython 118

Maya, connecting to signal 167, 168 is_exact_type function

opening, from Maya 162, 163 implementing 50

Python file, running as script 150

Python reload function, using 165, 166 J

QApplication class 151

signal, emitting from Maya 166, 167 JavaScript Object Notation file format 175

verifying 169 JIRA

widgets, adding 155 URL 107

window, creating 149, 150

window widget, defining 154 K

hléiig‘r];l (;1‘21'01‘ handler kwargs parameter 311-313

code objects, inspecting 97, 98 L

error e-mail contents, assembling 100, 101

error e-mail, sending 103, 104 LBYL 37

error handler, creating 95 library

error handler, improving 96, 97 code changes, reloading 13

filter based, adding on filename 98-100 creating 9

sys.excepthook 93
sys.excepthook, used in Maya 94
Hitchhiker's Guide to Packaging

creating, mayapy interpreter used 10
development root, selecting 11, 12
function, creating in IDE 12,13

URL 307 path, finding for 10, 11
Liskov Substitution Principle 21, 225
1%
I list comprehensions
IDE about 15
about 9 is_exact_type function, implementing 50

URL 48

using 48, 49

versus, map and filter 51
locals

capturing 108

function, creating in 12,13
imperative style programming 272
implementation detail, of function 117
info function 23

[327]

locals() function 315
log files
attaching 108
Look Before You Leap. See LBYL

magic methods 28
MakeTrue function 241
map and filter
versus, list comprehensions 51
math types, PyYMEL 21-23
Maya
about 9
architecture 225
automated tests, running in 214
connecting, to signal 167, 168
controlling, through request-reply 180
exploring 13-15
future versions, improving 129
hierarchy converter GUI,
integrating with 162
hierarchy converter GUI, opening
from 162,163
launching, from Python 194, 195
signal, emitting from 166, 167
site directory, creating for 299
source distribution, adding to 300
sys.excepthook, using 94
working with Python distributions 300
Maya 2013 English PyYMEL
URL 25
Maya API
about 225
function sets 229
Maya API Reference, navigating 227, 228
MObjects 229
OpenMaya bindings 226, 227
Maya API Reference
navigating 227, 228
Maya application
dealing with 92
leveraging 92
maya.cmds.file command 91
Maya, controlling through request-reply
about 180
Maya server, using 180

problems, handling with IPC 181
Python client, using 180
Python, controlling through eval 180
Python, controlling through exec 180
request-reply, demonstrating with
ZeroMQ 182,183
ZeroMQ, installing 181
Maya GUI session
server, running in 213
maya.OpenMayaMPx.MPxNode
Maya API class 260
Maya path
Qt object, getting from 170
mayapy interpreter
about 9
used, for creating library 10
Maya Python API
about 230
and PyMEL, comparing 246
hash value, obtaining of node 231, 232
mesh, building 232-237
mesh normals, setting 238-240
MScriptUtil, used to call method 241, 242
name, obtaining of MObject 231
node name conversion, to MObject
node 230, 231
OpenMaya, used for callbacks 243-246
Maya Python code
designing, for open source 304-306
Maya Python plugin
command flag, adding 252-254
creating 247
OpenMaya and scripting solutions,
comparing 255, 256
plugin file, creating 250-252
plugins, reloading 252
sound player library, creating 249
Maya server
using 180
Maya shelves
working with 177
Maya's Script Editor
using 94
Maya startup routine
about 191
batch mode, versus GUI mode 192
command line options, using 192

[328]

environment variables, using 193
startup configuration mechanism,
selecting 192
Maya window
getting, as QMainWindow 163, 164
MEL
types 17,18
menus
marker, verifying 176
marking, as new 172
persistence registry, adding 174-176
Qt object, getting from Maya path 170
test case, creating 173
top level menu, creating 169
widget font, changing 171

widgets styling, alternative methods 176

working with 169
Mercurial
URL 307
mesh
building 232-237
mesh normals
setting 238-240
method
calling, MScriptUtil used 241, 242
Method Resolution Order. See MRO
method types, class definition
bound methods 32
class methods 31
static methods 31
unbound method 32
metrics recording
decorator, creating for 133
MObject
about 229
name, obtaining 231
MObject node
name node, converting to 230, 231
model-view-controller MVC) 158
module type 29
MPxNode methods
overriding 293, 294
MRO
using 18
MScriptUtil
used, for calling method 241, 242

MultiplyDivide node 42
mutable state

dealing with 88, 89
MySet.__dict__ attribute 219
MySet type 219

N

name
obtaining, of MObject 231
namespaces 61
nested function. See closures
node
hash value, obtaining 231, 232
node connections 61
node factory
benefits 273
building 276
designing 273
extending 289
node factory, designing
abstraction, creating for compute
method 285-289
attributes, creating 277-279
attribute specification, designing 274, 275
attributes, specifying 276, 277
node, creating 282-285
node, specifying 279, 280
node type specification, designing 275
partial application, used for creating
attributes 281, 282
plugin nodes, designing 273
node factory, extending
color attribute, supporting 289, 290
enum attributes, supporting 290-292
MPxNode methods, overriding 293, 294
string attribute, supporting 289, 290
transform nodes, supporting 292, 293
node name
converting, to MObject node 230, 231
node plugins
about 260
building 260-262
compute method, creating 266, 267
initializer, defining 263-265
inputs, defining 263-265
non-Pythonic Maya API, taming 268

[329]

outputs, defining 263-265
plugin type IDs 262
node to joint conversion
simplifying 58, 59
non-operation program (no-op) 132
non-Pythonic Maya API
taming 268
nose library
URL 306

o)

object oriented programming 119
OpenMaya

per-vertex per-face normals 238
per-vertex per-polygon normals 238
Pillow

URL 307

pip

used, for installing third-party modules 303

plugin

about 248
PyMEL, using 256, 257
reloading 252

plugin file

creating 250-252

plugin module 248
plugin nodes

and scripting solutions, comparing 255, 256

used, for callbacks 243-246
OpenMaya bindings 226, 227
open source

Maya Python code, designing for 304-306

Open Source Initiative. See OSI
open source licenses

URL 296
open source project

starting 306, 307
Open Source Software. See OSS
OslI

about 296

URL 296
0SS

about 296

differentiating, from script download

sites 296, 297

P

parent class 18
parent process 196
partial application
used, for creating attributes 281, 282
path
finding, for library 10, 11
PEP8
about 15
URL 15
PEP 343
URL 118
persistence registry
adding, in menus 174-176

designing 273

plugin type IDs 263
plugin types 248
pmbhelp function, building

about 24

code issues 38

EAFP versus LBYL 37

help, opening in web browser 38-40

query string, creating for PyMEL
object 25-27

support, adding for functions 33, 34

support, adding for methods 30-32

support, adding for modules 29

support, adding for non-PyMEL
objects 34-36

support, adding for types 30

test cases, writing 27, 28

ports 183

postcondition, function 55
precondition, function 55
predicate 46

problems, handling with IPC

availability 181
monogamy 181
pairing 181

process lifetime 181
timeout mechanism 181

process_message function 152
ProxyUnicode class 21
pseudocode

about 25
writing, for skeleton converter library 52

[330]

PyMEL

about 297

and Maya Python API, comparing 246

attributes, decorating 139

data types 21-23

exploring 13-15

math types 21-23

methods, decorating 139

used, in plugin 256, 257
pymel.core.unloadPlugin function 249
PyMEL object

query string, creating for 25-27
PyMEL performance

defining 73

improving 72

source distribution, adding to Maya 300
wheel, adding to Maya 301
working with 300

Python Enhancement Proposal (PEP) 49
Python file

running, as script 150

Python library

benefits 255

Python metaprogramming

declarative code 271, 272
demystifying 268, 269

type creation 269, 270

type function, exploring 270, 271

Python Package Index (PyPI)

inner loops, rewriting to use maya.cmds 75

refactoring 73, 74
PyNodes 19, 20
PyQt
about 143, 144
and PySide, supporting 148
PySide
about 143, 144
and PyQt, supporting 148
installing 147
URL 148
Python
about 9,19
best practices 311-321
leveraging 92
Maya, launching from 194, 195
types 17,18
URL 308
Python client
using 180
Python Decorator Library
URL 140
Python Developer's Guide
URL 296
Python distributions
binary distributions, using on
Windows 302
egg, adding to Maya 301
pip, used for installing third-party
modules 303

about 140
URL 300
URL, for mock library 300
using 300

Python plugin

defining 248, 249

PyZMQ

about 181
URL 181

Q

QApplication class 151
Qt 143,144
Qt Designer

using 147

Qt layouts 145
Qt main windows 145
Qt object

getting, from Maya path 170

qtshim.py module

QtCore namespace 148
QtGui namespace 148
Signal class 148
wrapinstance function 148

Qt signals 146

Qt sorting 145

Qt widgets 144, 145
Qt window

making, child of Maya window 164, 165

query string

creating, for PYMEL object 25, 26

[331]

R

race condition 185
raise statement 80
Raven client
URL 108
raw strings 316
read-copy-update 88
Read-Evaluate-Print Loop. See REPL
refactor 38
refactoring 57
reference counting 118
reload function
about 94
using 165, 166
remote procedure call (RPC) 189
remove_selected function 73
REPL
about 23
leveraging 23, 24
request-reply
demonstrating, with ZeroMQ 182, 183
Maya, controlling through 180
request-reply automation system, building
about 193
basic Maya server, creating 197
code, running at Maya startup 198, 199
eval statement 199-201
exec statement 199-201
Maya, launching from Python 194, 195
Python package, creating 194
server, killing automatically 196, 197
support, adding for client-server
handshake 208-210
support, adding for eval 201, 202
support, adding for exception
handling 202-205
support, adding for exec 201, 202
support, adding for timeouts 206, 207
request-response 180
reStructured Text 53
rules, error handling
about 84
critical path, focusing 85
errors, catching 86, 87
partial mutations, avoiding 87
tool distribution, avoiding 85, 86

S

safe_setparent utility function
extracting 56, 57
script download sites
0SS, differentiating from 296, 297
scripting solutions
and OpenMaya, comparing 255, 256
s.__dict__ attribute 219
selection behavior 43
Sentry server
URL 108
serializer 188
server
about 180
running, in Maya GUI session 213
set_file_prompt context manager
building 125
set_namespace_active context manager
building 127, 128
set_renderlayer_active context manager
building 127
shapes
drawing, through inheritance
creation 221-225
shared normals 238
Simplified Wrapper and Interface Generator
(SWIG)
about 226
URL 226
site directory
creating, for Maya 299
creating, for third party modules 298
establishing, at startup 299
explaining 298
skeleton converter library
closures, using 60
coding 51
contract 55
docstring, using 53
docstring, writing 52
implementation, breaking 54, 55
implementation, writing 53, 54
namespaces, dealing with 61
node connections, dealing with 61
node to joint conversion, simplifying 58, 59
pseudocode, writing 52

[332]

refactoring 57
reStructured Text, using 53
safe_setparent utility function,
extracting 56, 57
wrapping up 62, 63
sound player library
creating 249
source code management (SCM) 307
source distribution
adding, to Maya 300
Sphinx project
URL 306
SQL Alchemy
URL 272
stack trace. See traceback
startup
site directory, establishing at 299
statement 199
static methods 31
status codes 190
string concatenation 315, 316
string formatting 16, 313-315
string literals 316
subroutine
inverting 111, 112
superclass 18
sys.excepthook function
about 93
using, in Maya 94
sys.exc_info() function 82

T

tail function
writing, for composable code 48
Test-Driven Development (TDD)
about 27
adopting 320
third-party modules
about 297, 298
site directory, creating for 298

third-party modules, putting in thirdparty

folder
drawbacks 301
top level menu
creating 169
traceback 81

traceback2 module

URL 108
traceback objects 81
Trello

URL 107
try/catch/finally flow control 79-81
tuple_to_mpoint function 235
type

about 14, 218

creating 218, 219

custom types used, to simplify

code 220, 221
inheritance creation, by drawing
shapes 221-225

type function

about 16

exploring 270, 271
type hierarchies 145
type introspection 9
types, MEL 17,18
types, Python 17,18

U

unbound method 32
undo blocks
leveraging 90
undo_chunk context manager
writing 121
undolnfo
drawbacks 90
undo_on_error context manager
writing 122
unhandled exceptions 83
Unicode strings 318
unit 41
user-defined scripts 192
user interface
adding 106
utility functions 56

\'

vertexArray parameter 228

[333]

w

What If Two Programs Did This
rule 105,106
What-You-See-Is-What-You-Get
(WYSIWYG) 147
widget font, menu
changing 171
widgets
styling, alternative methods 176
Windows
binary distributions, using on 302
Windows Presentation Foundation 147
window widget
defining 153, 154
WinForms 147
with_unit context manager
building 126, 127

y4

ZeroMQ

installing 181

request-reply, demonstrating with 182, 183
ZMQ- The Guide

URL 182

[334]

Thank you for buying
rusLisnine o Practical Maya Programming
with Python

About Packt Publishing

Packt, pronounced 'packed’, published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub. com.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub . com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PUBLISHING

Autodesk AutoCAD 2013 Practical
3D Drafting and Design
ISBN: 978-1-84969-935-8 Paperback: 374 pages

Take your AuotoCAD design skills to the next
dimension by creating powerful 3D models

1. Obtain 2D drawings from 3D models.

2. Master AutoCAD's third dimension.
Autodesk AutoCAD 2013 Practical

3D Drafting and Design 3. Full of practical tips and examples to help take
your skills to the next dimension.

Building Machine Learning

Systems with Python
ISBN: 978-1-78216-140-0 Paperback: 290 pages

Master the art of machine learning with Python and
build effective machine learning systems with this
intensive hands-on guide

1. Master Machine Learning using a broad set of
Python libraries and start building your own
Python-based ML systems.

Building Machine Learning
Systems with Python

2. Covers classification, regression, feature
engineering, and much more guided by
practical examples.

3. A scenario-based tutorial to get into the
right mind-set of a machine learner (data
exploration) and successfully implement this
in your new or existing projects.

Please check www.PacktPub.com for information on our titles

PUBLISHING

Programming ArcGIS 10.1
with Python Cookbook

Programming ArcGIS 10.1 with

Python Cookbook
ISBN: 978-1-84969-444-5 Paperback: 304 pages

Over 75 recipes to help you automate geoprocessing
tasks, create solutions, and solve problems for ArcGIS
with Python

1. Learn how to create geoprocessing scripts with
ArcPy.

2. Customize and modify ArcGIS with Python.

3. Create time-saving tools and scripts for ArcGIS.

Learning IPython for Interactive
Computing and Data Visualization

Learning IPython for Interactive

Computing and Data Visualization
ISBN: 978-1-78216-993-2 Paperback: 138 pages

Learn IPython for interactive Python programming,
high-performance numerical computing, and data
visualization

1. A practical step-by-step tutorial which will
help you to replace the Python console with the
powerful IPython command-line interface.

2. Use the IPython notebook to modernize the
way you interact with Python.

3. Perform highly efficient computations with
NumPy and Pandas.

4. Optimize your code using parallel computing
and Cython.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introspecting Maya, Python, and PyMEL
	Creating your library
	Using the interpreter
	Finding a place for our library
	Choosing a development root
	Creating a function in your IDE
	Reloading code changes

	Exploring Maya and PyMEL
	Creating an introspection function
	Understanding Python and MEL types
	Using the method resolution order
	PyNodes all the way down
	Understanding PyMEL data and math types
	Leveraging the REPL

	Building the pmhelp function
	Creating a query string for a PyMEL object
	Creating more tests
	Adding support for modules
	Adding support for types
	Adding support for methods
	Adding support for functions
	Adding support for non-PyMEL objects
	Designing with EAFP versus LBYL
	Code is never complete
	Opening help in a web browser

	Summary

	Chapter 2: Writing Composable Code
	Defining composability
	Identifying anti-patterns of composability
	Avoiding the use of Boolean flags
	Evolving legacy code into composable code
	Rewriting code for composability
	Getting the first Item in a sequence
	Writing head and tail functions

	Learning to use list comprehensions
	Implementing is_exact_type
	Saying goodbye to map and filter

	Writing a skeleton converter library
	Writing the docstring and pseudocode
	Understanding docstrings and
reStructured Text
	Writing the first implementation
	Breaking the first implementation
	Understanding interface contracts
	Extracting the safe_setparent utility function
	Learning how to refactor
	Simplifying the node to joint conversion
	Learning how to use closures
	Dealing with node connections
	Dealing with namespaces
	Wrapping up the skeleton converter

	Writing a character creator
	Stubbing out the character creator
	Implementing convert_hierarchies_main
	Implementing convert_hierarchies
	Decomposing into composable functions
	Implementing convert_hierarchy
	Supporting inevitable modifications

	Improving the performance of PyMEL
	Defining performance
	Refactoring for performance
	Rewriting inner loops to use maya.cmds

	Summary

	Chapter 3: Dealing with Errors
	Understanding exceptions
	Introducing exception types
	Explaining try/catch/finally flow control
	Explaining traceback objects
	Explaining the exc_info tuple

	Living with unhandled exceptions
	Handling exceptions at the application level

	Golden rules of error handling
	Focus on the critical path
	Keep the end user in mind
	Only catch errors you can handle
	Avoid partial mutations

	Practical error handling in Maya
	Dealing with expensive and mutable state
	Leveraging undo blocks
	Dealing with Maya's poor exception design
	Leveraging the Maya application
	Dealing with the Maya application
	Leveraging Python, which is better than MEL

	Building a high-level error handler
	Understanding sys.excepthook
	Using sys.excepthook in Maya
	Creating an error handler
	Improving the error handler
	Inspecting Python code objects
	Adding filtering based on filename
	Assembling the contents of an error email
	Sending the error e-mail

	Installing the error handler
	Obeying the What If Two Programs Did
This rule

	Improving the error handler
	Adding a user interface
	Using a background thread to send the email
	Moving beyond e-mail
	Capturing locals
	Attaching log files

	Summary

	Chapter 4: Leveraging Context Managers and Decorators
in Maya
	Inverting the subroutine
	Introducing decorators
	Explaining decorators
	Wrapping an exporter with a decorator

	Introducing context managers
	Writing the undo_chunk context manager
	Writing the undo_on_error context manager
	Contrasting decorators and context managers

	Context managers for changing
scene state
	Building the set_file_prompt context manager
	Building the at_time context manager
	Building the with_unit context manager
	Building the set_renderlayer_active context manager
	Building the set_namespace_active context manager
	Improving on future versions of Maya

	Creating the denormalized_skin context manager
	Safely swapping vertex influences
	Addressing performance concerns

	Creating a decorator to record metrics
	Getting a unique key
	Recording duration
	Reporting duration
	Handling errors

	Advanced decorator topics
	Defining decorators with arguments
	Decorating PyMEL attributes and methods
	Stacking decorators
	Using Python's decorator library
	Doing decorators the right way

	Summary

	Chapter 5: Building Graphical User Interfaces for Maya
	Introducing Qt, PyQt, and PySide
	Introducing Qt widgets
	Introducing Qt layouts
	Understanding Qt main windows and sorting
	Introducing Qt signals

	Establishing rules for crafting a GUI
	Prefer pure PySide GUIs where possible
	Use command-style UI building where necessary
	Avoid the use of .ui files

	Installing PySide
	Supporting PySide and PyQt
	Creating the hierarchy converter GUI
	Creating the window
	Running a Python file as a script
	Introducing the QApplication class
	Understanding the event loop
	Running your GUI
	Designing and building your GUI
	Defining control, container, and window widgets
	Adding the rest of the widgets
	Hooking up the application to be effected
by the GUI
	Hooking up the GUI to be effected by the application
	Simulating application events
	Considering alternative implementations

	Integrating the tool GUI with Maya
	Opening the tool GUI from Maya
	Getting the main Maya window as a QMainWindow
	Making a Qt window the child of Maya's window
	Using Python's reload function with GUIs
	Emitting a signal from Maya
	Connecting Maya to a signal
	Verifying the hierarchy converter works

	Working with menus
	Creating a top level menu
	Getting the Qt object from a Maya path
	Changing the font of a widget
	Marking menus as new
	Creating a test case
	Adding a persistence registry
	Verifying the new menu marker works
	Using alternative methods to style widgets

	Working with Maya shelves
	Summary

	Chapter 6: Automating Maya from the Outside
	Controlling Maya through request-reply
	Using a Python client and Maya server
	Controlling Python through exec and eval
	Handling problems with IPC
	Installing ZeroMQ
	Demonstrating request-reply with ZeroMQ
	Explaining connection strings, ports, bind, and connect

	Designing the automation system
	Pairing one client and one server
	Bootstrapping the server from the client
	The client-server handshake
	Defining the server loop
	Serializing requests and responses
	Choosing what the server does
	Handling exceptions between client and server

	Understanding the Maya startup routine
	Using batch mode versus GUI mode
	Choosing a startup configuration mechanism
	Using command line options
	Using environment variables

	Building the request-reply automation system
	Creating a Python package
	Launching Maya from Python
	Automatically killing the server
	Creating a basic Maya server
	Running code at Maya startup
	Understanding eval and exec
	Adding support for eval and exec
	Adding support for exception handling
	Adding support for timeouts
	Adding support for the client-server handshake

	Practical uses and improvements
	Batch processing using Maya
	Running a server in a Maya GUI session
	Running automated tests in Maya
	Adding support for logging
	Supporting multiple languages and applications
	Supporting control from a remote computer
	Designing an object-oriented system
	Evaluating other RPC frameworks

	Summary

	Chapter 7: Taming the Maya API
	Explaining types
	Dicts all the way down
	Using custom types to simplify code
	Introducing inheritance by drawing shapes

	Introducing Maya's API and architecture
	Understanding the OpenMaya bindings
	Navigating the Maya API Reference
	Understanding MObjects and function sets

	Learning the Maya Python API by example
	Converting a name to an MObject node
	Getting the name of an MObject
	Getting the hash of a node
	Building a mesh
	Setting mesh normals
	Using MScriptUtil to call a method
	Using OpenMaya for callbacks
	Comparing Maya Python API and PyMEL

	Creating a Maya Python plugin
	The life of a Python plugin
	Creating the sound player library
	Creating the plugin file
	Reloading plugins
	Adding a command flag
	Comparing the OpenMaya and scripting solutions

	Using PyMEL in a plugin that loads during startup
	Summary

	Chapter 8: Unleashing the Maya API through Python
	Understanding Dependency Graph plugins
	Building a simple node plugin
	Understanding plugin type IDs
	Defining inputs, outputs, and the initializer
	Creating the compute method
	Taming the non-Pythonic Maya API

	Demystifying Python metaprogramming
	Rethinking type creation
	Exploring the type function
	The importance of being declarative

	Designing the node factory
	Designing plugin nodes
	Designing the attribute specification
	Designing the node type specification

	Building the node factory
	Specifying attributes
	Creating attributes
	Specifying a node
	Using partial application to create attributes
	Creating a node
	Slaying the compute method

	Extending the node factory
	Supporting string and color attributes
	Supporting enum attributes
	Supporting transform nodes
	Overriding MPxNode methods

	Summary

	Chapter 9: Becoming a Part of the Python Community
	Understanding Open Source Software
	Differentiating OSS from script download sites
	Defining what a third-party module is

	Creating a site directory for third party modules
	Explaining the site directory
	Creating a new site directory for Maya
	Establishing the site directory at startup

	Working with Python distributions
in Maya
	Using the Python Package Index
	Adding a source distribution to Maya
	Adding an egg or wheel to Maya
	Using binary distributions on Windows
	Using pip to install third-party modules

	Contributing to the open source community
	Designing Maya Python code for open source
	Starting an open source project
	Distributing your project

	Engaging with the wider community
	Summary

	Appendix: Python Best Practices
	The args and kwargs parameters
	String formatting
	String concatenation
	Raw strings and string literals
	Path building and manipulation
	Unicode strings
	Using the doctest module
	Adopting Test-Driven Development
	Using the GitHub repository for this book

	Index

